Date Log
STUDY ON STRUCTURAL AND OPTICAL PROPERTIES OF Zn2SiO4 DOPED WITH Mn2+
Corresponding Author(s) : Dinh Thanh Khan
UED Journal of Social Sciences, Humanities and Education,
Vol. 9 No. 1 (2019): UED JOURNAL OF SOCIAL SCIENCES, HUMANITIES AND EDUCATION
Abstract
In this study, luminescence materials Zn2SiO4 doped with Mn2+ were fabricated by using the solid state reaction method. The structural and luminescence properties were investigated by using X-ray diffraction (XRD) and photoluminescence (PL) measurements. XRD results show that the crystallite size of the materials is a few hundred nanometers. The results also show the influence of Mn2+ concentration on the crystallite structure of Zn2SiO4, as a result, influencing the luminescence intensity of the materials, as shown in PL results. The obtained results can be explained based on the difference in the size of ions Mn2+ and Zn2+ and the luminescence quenching phenomenon.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
-
[1] C. Barthou, J. Benoit, P. Benalloul, and A. Morell (1994). Mn2+ Concentration Effect on the Optical Properties of Zn2SiO4:Mn Phosphors. Journal of The Electrochemical Society, 141, 524-528.
[2] T.H. Choa and H.J. Chang (2003). Preparation and characterizations of Zn2SiO4:Mn green phosphors. Ceramics International, 29, 611-618.
[3] R.P.S. Chakradhar, B.M. Nagabhushana, G.T. Chandrappa, K.P. Ramesh, and J.L. Rao (2004). Solution combustion derived nanocrystalline Zn2SiO4: Mn phosphors: A spectroscopic view. The Journal of Chemical Physics, 121, 10250-10259.
[4] Z.T. Kang, Y. Liu , B.K. Wagner, R. Gilstrap, M. Liu, and C.J. Summers (2006). Luminescence properties of Mn2+ doped Zn2SiO4 phosphor films synthesized by combustion CVD. Journal of Luminescence, 121, 595-600.
[5] Q. Lu, P. Wang, and J. Li (2011). Structure and luminescence properties of Mn-doped Zn2SiO4 prepared with extracted mesoporous silica. Materials Research Bulletin, 46, 791-795.
[6] K.W. Park, H.S. Lim, S.W. Park, G. Deressa, and J.S. Kim (2015). Strong blue absorption of green Zn2SiO4:Mn2+ phosphor by doping heavy Mn2+ concentrations. Chemical Physics Letters, 636, 141-145.
[7] B.C. Babu, B.V. Rao, M. Ravi, and S. Babu (2017). Structural, microstructural, optical, and dielectric properties of Mn2+: Willemite Zn2SiO4 nanocomposites obtained by a sol-gel method. Journal of Molecular Structure, 1127, 6-14.
[8] S.C. Peter, K. Robert, and D.S Galusek (2016). Photoluminescence of (ZnO)X-Z(SiO2)Y:(MnO)Z green phosphors prepared by direct thermal synthesis: The effect of ZnO/SiO2 ratio and Mn2+ concentration on luminescence. Ceramics International, 15, 16852-16860.
[9] A.K. Zak, W.H.A. Majid, M.E. Abrishami, and R. Yousefi (2011). X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sciences, 13, 251-256.
[10] Y.T. Prabhu, K.V. Rao, V.S.S. Kumar, and B.S. Kumari (2014). X-Ray Analysis by Williamson-Hall and Size-Strain Plot Methods of ZnO Nanoparticles with Fuel Variation. World Journal of Nano Science and Engineering, 4, 21-28.
[11] M.C. Parmar, W.D. Zhuang, K.V.R. Murthy, X.W. Huang, Y.S. Hu, and V. Natarajan (2009). Role of SiO2 in Zn2SiO4: Mn2+ phosphor used in optoelctronic materials. Indian Journal of Engineering & Material science, 16, 185-187.