Date Log
SIMULATION OF THERMAL STRAIN IN AlN CRYSTALLINE FILM GROWN ON A TRENCH-PATTERNED AlN/-Al2O3 TEMPLATE USING THE FINITE ELEMENT METHOD
Corresponding Author(s) : Dinh Thanh Khan
UED Journal of Social Sciences, Humanities and Education,
Vol. 6 No. 3 (2016): UED JOURNAL OF SOCIAL SCIENCES, HUMANITIES AND EDUCATION
Abstract
Thermal strain that results from differences in thermal parameters between AlN and a-Al2O3 in an AlN crystalline film grown on a trench-patterned AlN/a-Al2O3 template has been simulated via the finite element method using the sotfware ANSYS. The simulation results show that the thermal strain is distributed in circulation along the direction in correspondence with the circulation of the trench-patterned structure of the AlN/a-Al2O3 template. The thermal strain reduces considerably around voids formed in crystalline AlN films due to the horizontal overgrowth of AlN crystals on the trench-paterned AlN/a-Al2O3 template. The simulation results clearly indicate that the use of trench-patterned templates has significantly reduced the thermal strain in crystalline films through the formation of voids.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
-
[1] Y. Taniyasu, M. Kasu, and T. Makimoto (2006), “An aluminium nitride light-emitting diode with a wavelength of 210 nanometres”, Nature (London), 441, 325-328.
[2] H. Hirayama, S. Fujikawa, N. Noguchi, J. Norimatsu, T. Takano,K. Tsubaki, and N. Kamata (2009), “222-282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire”, Phys. Status Solidi A, 206, 1176-1182.
[3] R. McClintock, A. Yasan, K. Mayes, D. Shiell, S. R. Darvish, P. Kung, and M. Razeghi (2004), “High quantum efficiency AlGaN solar-blind p-i-n photodiodes”, Appl. Phys. Lett., 84, 1248-1250.
[4] L. M. Sheppard (1990), “Aluminum nitride: A versatile but challenging material”, Am. Ceram. Soc. Bull., 69, 1801-1812.
[5] Y. Katagiri, S. Kishino, K. Okuura, H. Miyake, K. Hiramatu (2009), “Low-pressure HVPE growth of crack-free thick AlN on a trench-patterned AlN template”, J. Cryst. Growth, 311, 2831-2833.
[6] S. A. Newman, D. S. Kamber, T. J. Baker, Y. Wu, F. Wu, Z. Chen, S. Namakura, J. S. Speck, and S. P. DenBaars (2009), “Lateral epitaxial overgrowth of (0001) AlN on patterned sapphire using hydride vapor phase epitaxy”, Appl. Phys. Lett., 94, 121906.
[7] M. Imura, K. Nakano, N. Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, T. Noro, T. Takagi, and A. Bandoh (2006), “High-temperature metal-organic vapor phase epitaxial growth of AlN on sapphire by multi transition growth mode method varying V/III ratio”, Jpn. J. Appl. Phys., 45, 8639–8643.
[8] L. W. Sang, Z. X. Qin, H. Fang, T. Dai, Z. J. Yang, B. Shen, G. Y. Zhang, X. P. Zhang, J. Xu, and D. P. Yu (2008), “Reduction in threading dislocation densities in AlN epilayer by introducing a pulsed atomic-layer epitaxial buffer layer”, Appl. Phys. Lett., 93, 122104.
[9] K. Hiramatsu, T. Detchprom, and I. Akasaki, (1993), “Relaxation mechanism of thermal strain in heterostructure of GaN grown on sapphire by vapor phase epitaxy”, Jpn. J. Appl. Phys., 32, 1528-1533.
[10] K. Nakano, M. Imura, G. Narita, T. Kitano, Y. Hirose, N. Fujimoto, N. Okada, T. Kawashima, K. Iida, K. Balakrishnan, M. Tsuda, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, (2006), “Epitaxial lateral overgrowth of AlN layers on patterned sapphire substrates”, Phys. Status Solidi A, 203, 1632-1635.
[11] Z. Chen, R. S. Q. Fareed, M. Gaevski, V. Adivarahan, J. W. Yang, A. Khan, J. Mei, F. A. Ponce (2006), “Pulsed lateral epitaxial overgrowth of aluminum nitride on sapphire substrates”, Appl. Phys. Lett., 89, 081905.
[12] J. Mei, F. A. Ponce, R. S. Q. Fareed, J. W. Yang, A. Khan (2007), “Dislocation generation at the coalescence of aluminum nitride lateral epitaxy on shallow-grooved sapphire substrates”, Appl. Phys. Lett., 90, 221909.
[13] S. Figge, H. Kröncke, D. Hommel, and B. M. Epelbaum (2009) , “Temperature dependence of the thermal expansion of AlN”, Appl. Phys. Lett. 94, 101915.
[14] E. R. Dobrovinskaya, L. A. Lytvynov, and V. pishchik (2009), “Sapphire: material, manufacturing and applications”, Springer Science + Business Media, LLC.
[15] C. Deger, E. Born, H. Angerer, O. Ambacher, M. Stutzmann, J. Hornsteiner, E. Riha, and G. Fischerauer (1998), “Sound velocity of AlxGa1-xN thin films obtained by surface acoustic-wave measurements”, Appl. Phys. Lett. 72, 2400-2402.
[16] R. Langer, A. Barski, A. Barbier, G. Renaud, M. Leszczynski, I. Grzegory, and S. Porowski (1999), “Strain relaxation in AlN epitaxial layers grown on GaN single crystals”, J. Cryst. Growth 205, 31-35.
[17] K. Hiramatsu, T. Detchprom, I. Akasaki (1993), “Relaxation mechanism of thermal stress in the heterostructure of GaN grown on sapphire by vapor phase epitaxy”, Jpn. J. Appl. Phys. 32, 1528-1533.
[18] G.H. Olsen, M. Ettenberg (1977), “Calculated stresses in multilayered heteroepitaxial structures”, J. Appl. Phys. 48, 2543–2547.
[19] K. Hiramatsu, T. Detchprom, I. Akasaki (1993), “Relaxation mechanism of thermal stresses in the heterostructure of GaN grown on sapphire by vapor phase epitaxy”, Jpn. J. Appl. Phys. 32, 1528–1533.