Date Log
Submitted
Jul 21, 2020
Published
Dec 25, 2018
EFFECT OF SPIN-ORBIT COUPLING ON ELECTRONIC PROPERTIES OF MONOLAYER MoS2
Corresponding Author(s) : Nguyen Van Hieu
nvhieu@ued.udn.vn
UED Journal of Social Sciences, Humanities and Education,
Vol. 8 No. 4 (2018): UED JOURNAL OF SOCIAL SCIENCES, HUMANITIES AND EDUCATION
Abstract
In the present paper (article), we examine the effect of spin-orbit coupling on electronic properties of monolayer MoS2 under an external electric field using density functional theory. Our caculations show that there is a spliting of subbands near the Fermi level in the electronic band structure of the monolayer MoS2 when the spin-orbit coupling effect is included. Besides, the semiconductor-metal phase transition has been found in the monolayer MoS2 at the external electric field of 1.0 V/Å.
Keywords
Monolayer MoS2; electronic properties; density functional theory.
Nguyen Van Hieu, Nguyen Van Chuong, Le Thi Thu Phuong, Le Cong Nhan, & Nguyen Van Hieu. (2018). EFFECT OF SPIN-ORBIT COUPLING ON ELECTRONIC PROPERTIES OF MONOLAYER MoS2. UED Journal of Social Sciences, Humanities and Education, 8(4), 8-12. https://doi.org/10.47393/jshe.v8i4.213
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
References
-
[1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov (2004). Electric field effect in atomically thin carbon films. Science, 306 (5696), 666-669.
[2] E.P. Randviir, D.A.C. Brownson, C.E. Banks (2014. A decade of graphene research: production, applications and outlook. Materials Today, 17(9), 426-432.
[3] F. Schwierz (2010). Graphene transistors. Nature Nanotechnology, 5, 487-496.
[4] T.C. Berkelbach, M.S. Hybertsen, D.R. Reichman (2013). Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Physical Review B, 88, 045318-045323.
[5] K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz (2010). Atomically thin MoS2: A new direct-gap semiconductor. Physical Review Letters, 105, 136805 (4 pages).
[6] K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim (2005). Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10451-10453.
[7] R. Ganatra, Q. Zhang (2014). Few-layer MoS2: A promising layered semiconductor. ACS Nano, 8, 4074-4099.
[8] J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, V. Nicolosi (2011). Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 331(6017), 568-571.
[9] D. Kim, D. Sun, W. Lu, Z. Cheng, Y. Zhu, D. Le, T.S. Rahman, L. Bartels (2011). Toward the growth of an aligned single-layer MoS2 film. Langmuir, 27(18), 11650-11653.
[10] C.V. Nguyen, N.N. Hieu (2016). Effect of biaxial strain and external electric field on electronic properties of MoS2 monolayer: A first-principle study. Chemical Physics, 468, 9-14.
[11] C. Ataca, M. Topsakal, E. Aktürk, S. Ciraci (2011). A comparative study of lattice dynamics of three- and two-dimensional MoS2. The Journal of Physical Chemistry C, 115, 16354-16361.
[12] S. Lebègue, O. Eriksson (2009). Electronic structure of two-dimensional crystals from ab initio theory. Physical Review B, 79, 115409-115414.
[13] P. Johari, V.B. Shenoy (2011). Tunable dielectric properties of transition metal dichalcogenides. ACS Nano. 5, 5903-5908.
[14] P. Johari, V.B. Shenoy (2012). Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. ACS Nano, 6, 5449-5456.
[15] U.K. Sen, P. Johari, S. Basu, C. Nayak, S. Mitra (2014). An experimental and computational study to understand the lithium storage mechanism in molybdenum disulfide. Nanoscale, 6, 10243-10254.
[16] H. Guo, T. Yang, P. Tao, Y. Wang, Z. Zhang (2013). High pressure effect on structure, electronic structure, and thermoelectric properties of MoS2. Journal of Applied Physics, 113(1), 013709-013714.
[17] X. Fan, C.H. Chang, W.T. Zheng, J.-L. Kuo, D.J. Singh (2015). The electronic properties of single-layer and multilayer MoS2 under high pressure. The Journal of Physical Chemistry C, 119, 10189-10196.
[18] O. Kohulák, R. Martoňák (2017). New high-pressure phases of MoSe2 and MoTe2. Physical Review B, 95, 054105-054112.
[19] J.P. Perdew, K. Burke, M. Ernzerhof (1996). Generalized gradient approximation made simple. Physical Review Letters, 77, 3865-3868.
[20] J.P. Perdew, K. Burke, M. Ernzerhof (1997). Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Physical Review Letters, 78, 1396-1396.
[21] G. Paolo, B. Stefano, B. Nicola, C. Matteo, C. Roberto, C. Carlo, C. Davide, L.C. Guido, C. Matteo, D. Ismaila, C. Andrea Dal, G. Stefano de, F. Stefano, F. Guido, G. Ralph, G. Uwe, G. Christos, K. Anton, L. Michele, M.-S. Layla, M. Nicola, M. Francesco, M. Riccardo, P. Stefano, P. Alfredo, P. Lorenzo, S. Carlo, S. Sandro, S. Gabriele, P.S. Ari, S. Alexander, U. Paolo, M.W. Renata (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21, 395502 (19 pages).
[22] S. Grimme (2006). Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. Journal of Computatinal Chemistry, 27(15), 1787-1799.
[23] N.N. Hieu, H.V. Phuc, V. V Ilyasov, N.D Chien, N.A Poklonski, N.V. Hieu, C.V. Nguyen (2017). First-principles study of the structural and electronic properties of graphene/MoS2 interfaces. Journal Applied Physics, 122, 104301 (7 pages).
[24] H. V. Phuc, N. N. Hieu, B. D. Hoi, N. V. Hieu, T. V. Thu, N. M. Hung, V. V. Ilyasov, N. A. Poklonski, C. V. Nguyen (2018). Tuning the electronic properties, effective mass and carrier mobility of MoS2 monolayer by strain engineering: First-principle calculations. Journal of Electronic Materials, 47(1), 730-736.
[25] Y. A. Bychkov and É. I. Rashba (1984). Properties of a 2D electroni gas with lifted spectral defeneracy. JETP Letters 39, 78-81.
[26] A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, and R. A. Duine (2015). New perspectives for Rashba spin-orbit coupling. Nature Materials, 14, 871-882.