Date Log
OPTICAL CHARACTER RECOGNITION: ACHIEVEMENTS, CHALLENGES AND APPROACHES
Corresponding Author(s) : Pham Anh Phuong
UED Journal of Social Sciences, Humanities and Education,
Vol. 5 No. 3 (2015): UED JOURNAL OF SOCIAL SCIENCES, HUMANITIES AND EDUCATION
Abstract
In the field of recognition, Optical Character Recognition (OCR) has had more and more applications in the social life. Up to now, the problem of recognizing printed characters has been almost completely solved (its product ABBYY FineReader 12.0 can recognize printed letters in 20 different languages, the Vietnamese printed character recognition software VnDOCR 4.0 of Ha Noi Institute of Information technology can identify documents containing images, tables and texts with an accuracy level of over 98%). However, in the world as well as in Vietnam, the problem of handwriting recognition still remains a big challenge for researchers. This paper is to present an overview of the achievements, shortcomings and challenges in this field of OCR as well as propose some new approaches for this type of research.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
-
[1] Hoàng Kiếm, Nguyễn Hồng Sơn, Đào Minh Sơn (2001), “Ứng dụng mạng nơron nhân tạo trong hệ thống xử lý biểu mẫu tự động”, Kỷ yếu hội nghị kỷ niệm 25 năm thành lập Viện Công nghệ Thông tin, tr. 560-567.
[2] Lê Hoài Bắc, Lê Hoàng Thái (2001), “Neural Network & Genetic Algorithm in Application to Handwritten Character Recognition”, Tạp chí Tin học và Điều khiển học, Tập 17, số 4, tr. 57-65.
[3] Lê Minh Hoàng, Ngô Quốc Tạo, Lương Chi Mai (2001), “Ứng dụng mô hình Markov ẩn trong nhận dạng chữ”, Kỷ yếu hội nghị kỷ niệm 25 năm thành lập Viện Công nghệ Thông tin, tr. 568-577.
[4] Lương Chi Mai, Nguyễn Hữu Hòa (2001), “Áp dụng mạng nơ ron mờ trong nhận dạng chữ số, chữ viết tay tiếng Việt”, Kỷ yếu hội nghị kỷ niệm 25 năm thành lập Viện Công nghệ Thông tin, tr. 623-631.
[5] Nguyễn Thị Minh Ánh, Đinh Việt Cường, Ngô Trí Hoài, Nguyễn Việt Hà (2005), “Mô hình liên mạng nơ ron ứng dụng trong nhận dạng ký tự viết tay tiếng Việt”, Kỷ yếu hội thảo Quốc gia: Một số vấn đề chọn lọc của Công nghệ Thông tin, Hải Phòng, tr. 37-46.
[6] Phạm Anh Phương, Ngô Quốc Tạo, Lương Chi Mai (2008), “Trích chọn đặc trưng wavelet Haar kết hợp với SVM cho việc nhận dạng chữ viết tay tiếng Việt”, Tạp chí Công nghệ Thông tin và Truyền thông, ISSN 0866-7039, kỳ 3, số 20, tr. 36-42.
[7] Arica N., Yarman-Vural F.T. (2001), “An overview of character recognition focused on off-line handwriting”, Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on Volume 31, Issue 2, pp. 216 – 233.
[8] Christopher J. C. Burges (1998), “A Tutorial on Support Vector Machines for Pattern Recognition”, Data Mining and Knowledge Discovery, ISSN: 1384-5810, Vol. 2, No. 2, pp. 121-167.
[9] Cakmakov D., Gorgevik D. (2005), “Handwritten Digit Recognition Using Classifier Cooperation Schemes”, Proceedings of the 2nd Balkan Conference in Informatics, BCI 2005, Ohrid, pp. 23-30.
[10] Gorgevik D., Cakmakov D. (2004), “An Efficient Three-Stage Classifier for Handwritten Digit Recognition”, Proceedings of 17th Int. Conference on Pattern Recognition, ICPR2004, Vol. 4, IEEE Computer Society, Cambridge, UK, pp. 507-510.
[11] G. Vamvakas, B. Gatos, I. Pratikakis, N. Stamatopoulos, A. Roniotis and S.J. Perantonis (2007), "Hybrid Off-Line OCR for Isolated Handwritten Greek Characters", The Fourth IASTED International Conference on Signal Processing, Pattern Recognition, and Applications (SPPRA 2007), ISBN: 978-0-88986-646-1, Innsbruck, Austria, pp. 197-202.
[12] H. D. Block, B. W. Knight, F. Rosenblatt (1962), “Analysis of A Four Layer Serious Coupled Perceptron”, II. Rev. Modern Physics, vol.34, pp.135-152.
[13] H. J. Kang, S. W. Lee (1999), “Combining Classifiers based on Minimization of a Bayes Error Rates”, in Proc. 5th Int. Conf. Document Analysis and Recognition, Bangalore, India, pp.398-401.
[14] J. Platt (1999), “Fast Training of Support Vector Machines Using Sequential Minimal Optimization”, In Advences in Kernel Methods - Support Vector Learning, Cambridge, M.A, MIT Press, pp. 185-208.
[15] J. X. Dong, A. Krzyzak and C. Y. Suen (2003), “A Fast SVM Training Algorithm”, International Journal of Pattern Recognition and Artificial Intelligence, vol. 17, no. 3, pp. 367 – 384.
[16] L. Lam C. Y. Suen (1994), “Increasing Experts for Majority Vote in OCR: Theoretical Considerations and Strategies”, in Proc. Int. Workshop Frontiers in Handwriting Recognition, Taiwan, pp. 245-254.
[17] Mohamed Cheriet, Nawwaf Kharma, Cheng-Lin Liu And Ching Y. Suen (2007), “Character Recognition Systems: A Guide for Students and Practioners”, N. Y.: John Wiley & Sons.
[18] Ngo Quoc Tao, Pham Van Hung (2006), “Online Continues Vietnamese Handwritten Character Recognition based on Microsoft Handwritten Character Recognition Library”, IEEE Asia Pacific Conference on Circuits and Systems, APCCAS 2006, Singapore, pp. 2024-2026.
[19] Pham Anh Phuong, Ngo Quoc Tao, Luong Chi Mai (2008), “An Efficient Model for Isolated Vietnamese Handwritten Recognition”, The Fourth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IEEE Computer Society, Harbin, China, pp. 358-361.
[20] Pham Anh Phuong, Ngo Quoc Tao, Luong Chi Mai (2008), “Speeding Up Isolated Vietnamese Handwritten Recognition by Combining SVM and Statistical Features”, IJCSES International Journal of Computer Sciences and Engineering Systems, ISSN 0973-4406, Vol.2, No.4, pp. 243-247.
[21] J. Platt, N. Cristianini and J. Shawe-Taylor (2000), “Large Margin DAGs for Multiclass Classification”, In Advances in Neural Information Processing Systems, volume 2, pp. 547-553.
[22] R. Collobert and S. Bengio (2001), “Svmtorch: Support Vector Machines for Large-scale Regression Problems”, The Journal of Machine Learning Research, Vol. 1, pp 143 – 160.
[23] R. M. Bozinovic, S. N. Srihari (1989), “Off-line Cursive Script Word Recognition”, IEEE Trans. Pattern Analysis and Machine Intelligence, vol.11, no.1, pp.68-83.
[24] T. Joachims (1998), “Making large-Scale Support Vector Machine Learning Practical”, in Advances in Kernel Methods - Support Vector Learning, B. Schölkopf and C. Burges and A. Smola (ed.), MIT-Press, Cambridge, MA.
[25] T. Kohonen (1995), “Self Organizing Maps”, Springer Series in Information Sciences, vol.30, Berlin.
[26] V. N. Vapnik (1998), “Statistical Learning Theory”, N. Y.: John Wiley & Sons.
[27] V. Govindaraju, D. Bouchaffra, S. N. Srihari (1999), “Postprocessing of Recognized Strings Using Nonstationary Markovian Models”, IEEE Trans. Pattern Analysis and Machine Intelligence, vol.21, no.10, pp. 990-999.
[28] W. H. Tsai, K.S.Fu (1980), “Attributed Grammar - A Tool for Combining Syntactic and Statistical Approaches to Pattern Recognition”, IEEE Trans. System Man and Cybernetics, vol.10, no.12, pp. 873-885.
[29] Y. Tang, L. T. Tu, J. Liu, S. W. Lee, W. W. Lin, I. S. Shyu (1998), “Off-line Recognition of Chinese Handwriting by Multifeature and Multilevel Classification”, IEEE Trans. Pattern Analysis and Machine Intelligence, vol.20, no.5, pp.556-561.
[30] V. Govindaraju, J. Park, S. N. Srihari (2000), “OCR in A Hierarchical Feature Space”, IEEE Trans. Pattern Analysis and Machine Intelligence, vol.22, no.4, pp.400-407.