Date Log
Submitted
Jul 31, 2020
Published
Sep 8, 2013
H-PRIME GOLDIE MODULES
Corresponding Author(s) : Truong Cong Quynh
tcquynh@dce.udn.vn
UED Journal of Social Sciences, Humanities and Education,
Vol. 3 No. 3 (2013): UED JOURNAL OF SOCIAL SCIENCES, HUMANITIES AND EDUCATION
Abstract
In this paper we study the definition prime submodules by property homomorphism of modules; in particular, by definition of product submodules. Let M be a right R-module and X < M be a fully invariant submodule. X is called H-prime submodule of M if for all fully invariant submodules I and U of M such that IU ≤ X then I ≤ X or U ≤ X.
Keywords
H-prime submodule; H-prime module; prime ideal; fully invariant submodule.
Huynh Thi Phan, & Truong Cong Quynh. (2013). H-PRIME GOLDIE MODULES. UED Journal of Social Sciences, Humanities and Education, 3(3), 27-31. https://doi.org/10.47393/jshe.v3i3.474
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
References
-
[1] A. W. Chatters, C. R. Hajarnavis (1980), Rings With Chain Conditions, Pitman Advanced Publishing Program.
[2] A. Gaur and A. Kumar Maloo (2008), "Minimal prime submodules", Int. J. Algebra 2(20), 953-956.
[3] C. Lomp (2004), Prime element in partially ordered groupoids applied to modules and Hopf algebra actions, J. Algebra Appl, 4(1), 77-97.
[4] C. P. Lu (1984), Prime submodules of modules, Comment. Mat. Univ. St. Pal. 33(1), 61-69.
[5] N. V. Sanh, S. Asawasamrit (2010), K. F. U. Ahmed and L. P. Thao, "On prime and semiprime Goldie modules", Asian-European Journal of Mathematics, 4, 1-14.
[6] T.C.Quynh, A.Thu, "On H-prime submodules", preprint.