Date Log
EFFECT OF DIFFERENT NITROGEN SOURCES ON GROWTH OF ARTHROSPIRA (SPIRULINA) PLATENSIS
Corresponding Author(s) : Trinh Thi Mau
UED Journal of Social Sciences, Humanities and Education,
Vol. 9 No. 3 (2019): UED JOURNAL OF SOCIAL SCIENCES, HUMANITIES AND EDUCATION
Abstract
Arthrospira (Spirulina) platensis, one of the most nutritous foods for humans, is currently being cultivated (in different countries around the world) globally. For sake of making improvement to the culture media)In order to improve the culture media for Spirulina cultivation, this study was conducted to investigate effects of different nitrogen sources, including ammonium, nitrate and nitrite, on Spirulina’s growth. Result from experiments indicated that media with 25% Nitrogen added in any form was the best for the growth of this species compared to other concentrations. In the comparison among effects of different nitrogen sources on performance of Spirulina, average growth rate and maximum dry weight of microalgae in experiment with NH4Cl was much lower than those in NH4NO3, NaNO2 and NaNO3. The difference in algal responses between the latter three were statically insignificant.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
-
[1] Seyidoglu, N., Inan, S., & Aydin, C. (2017). A prominent superfood: Spirulina platensis. Superfood and Functional Food The Development of Superfoods and Their Roles as Medicine, 1-27.
[2] Trần Thị Lê Trang (2016). Effect of light intensity on growth, protein and lipid content of Spirulina platensis (Geitler, 1925) culture in seawater. Tạp chí Khoa học - Công nghệ Thủy sản, (2), 124-129.
[3] Trần Thị Lê Trang và Trần Văn Dũng (2013). Ảnh hưởng của các mức photpho khác nhau lên sinh trưởng, hàm lượng protein và lipid của tảo Spirulina platensis (Geitler, 1925) nuôi trong nước mặn. Nghiên cứu và trao đổi Trường Đại học Nha Trang, 58-63.
[4] Trương Văn Lung (2004). Công nghệ sinh học một số loài tảo kinh tế. NXB Khoa học và Kỹ thuật Hà Nội.
[5] Trần Thị Lê Trang (2013). Ảnh hưởng của các mức nitơ khác nhau lên sinh trưởng, hàm lượng protein và lipid của tảo Spirulina platensis (Geitler, 1925) nuôi trong nước mặn. Tạp chí Khoa học Trường Đại học Cần Thơ, (26), 180-187.
[6] Vonshak, A., Abeliovich, A., Boussiba, S., Arad, S., & Richmond, A. (1982). Production of Spirulina biomass: effects of environmental factors and population density. Biomass, 2(3), 175-185.
[7] Ravindra, P. (2000). Value-added food: Single cell protein. Biotechnology advances, 18(6), 459-479.
[8] Abeliovich, A., & Azov, Y. (1976). Toxicity of ammonia to algae in sewage oxidation ponds. Appl. Environ. Microbiol, 31(6), 801-806.
[9] Piorreck, M., Baasch, K. H., & Pohl, P. (1984). Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry, 23(2), 207-216.
[10] Rodrigues, M. S., Ferreira, L. S., Converti, A., Sato, S., & De Carvalho, J. C. M. (2011). Influence of ammonium sulphate feeding time on fed-batch Arthrospira (Spirulina) platensis cultivation and biomass composition with and without pH control. Bioresource technology, 102(11), 6587-6592.
[11] Choi, A., Kim, S. G., Yoon, B. D., & Oh, H. M. (2003). Growth and amino acid contents of Spirulina platensis with different nitrogen sources. Biotechnology and BioproCess Engineering, 8(6), 368-372.
[12] Mashor, N., Yazam, M. S. M., Naqqiuddin, M. A., Omar, H., & Ismail, A. (2016). Different Nitrogen Sources Effects on the Growth and Productivity of Spirulina Grown In Outdoor Conditions. Acta Biologica Malaysiana, 5(1), 16-26.
[13] Zarrouk, C. (1966). Contribution a l'etude d'une Cyanophycee. Influence de Divers Facteurs Physiques et Chimiques sur la croissance et la photosynthese de Spirulina mixima. Thesis, University of Paris, France.
[14] Madkour, F. F., Kamil, A. E. W., & Nasr, H. S. (2012). Production and nutritive value of Spirulina platensis in reduced cost media. The egyptian journal of aquatic research, 38(1), 51-57.
[15] Belay, A. (2002). The potential application of Spirulina (Arthrospira) as a nutritional and therapeutic supplement in health management. J Am Nutraceutical AssoC, 5, 27-48.
[16] Deschoenmaeker, F., Bayon-Vicente, G., Sachdeva, N., Depraetere, O., Pino, J. C. C., Leroy, B.,...& Wattiez, R. (2017). Impact of different nitrogen sources on the growth of Arthrospira sp. PCC 8005 under batch and continuous cultivation-A bioChemical, transcriptomic and proteomic profile. Bioresource technology, 237, 78-88.
[17] Soni, R. A., Sudhakar, K., & Rana, R. S. (2017). Spirulina From growth to nutritional product: A review. Trends in food science & technology, 69, 157-171.
[18] Leduy, A., & Therien, N. (1977). An improved method for optical density measurement of the semimicroscopic blue green alga Spirulina maxima. Biotechnology and bioengineering, 19(8), 1219-1224.
[19] Fagiri, Y. M. A., Salleh, A., & El-Nagerabi, S. A. F. (2013). Impact of physico-chemical parameters on the physiological growth of Arthrospira (Spirulina platensis) exogenous strain UTEXLB2340. African Journal of Biotechnology, 12(35).
[20] Li, Y., Horsman, M., Wang, B., Wu, N., & Lan, C. Q. (2008). Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Applied microbiology and biotechnology, 81(4), 629-636.
[21] Flores, E., & Herrero, A. (1994). Assimilatory nitrogen metabolism and its regulation. In The molecular biology of cyanobacteria, 487-517. Springer, Dordrecht.
[22] Chaffin, J. D., Bridgeman, T. B., & Bade, D. L. (2013). Nitrogen constrains the growth of late summer cyanobacterial blooms in Lake Erie. Advances in Microbiology, 3(06), 16.
[23] Muro-Pastor, M. I., Reyes, J. C., & Florencio, F. J. (2005). Ammonium assimilation in cyanobacteria. Photosynthesis research, 83(2), 135-150.
[24] Belkin, S., & Boussiba, S. (1991). Resistance of Spirulina platensis to ammonia at high pH values. Plant and cell physiology, 32(7), 953-958.
[25] Markou, G., & Muylaert, K. (2016). Effect of light intensity on the degree of ammonia toxicity on PSII activity of Arthrospira platensis and Chlorella vulgaris. Bioresource technology, 216, 453-461.
[26] Fernández-Reiriz, M. J., Perez-Camacho, A., Ferreiro, M. J., Blanco, J., Planas, M., Campos, M. J., & Labarta, U. (1989). Biomass production and variation in the biochemical profile (total protein, carbohydrates, RNA, lipids and fatty acids) of seven species of marine microalgae. Aquaculture, 83(1-2), 17-37.
[27] Shifrin, N. S., & Chisholm, S. W. (1981). Phytoplankton lipids: interspecific differences and effects of nitrate, silicate and light dark cycles. Journal of phycology, 17(4), 374-384.
[28] De Ciencias, F. (1995). Culture of the marine diatom Phaeodactylum tricornutum with different nitrogen sources: growth, nutrient conversion and biochemical composition. Cah. Biol. Mar, 36, 165-173.