Date Log
PHYTOCHEMICAL SCREENING AND CYTOTOXIC EVALUATION FROM LEAF EXTRACTS OF COMBRETUM QUADRANGULARE AND CLERODENDRUM INERME ON MCF-7 AND HEPG2 CANCER CELL LINES
Corresponding Author(s) : Ly Hai Trieu
UED Journal of Social Sciences, Humanities and Education,
Vol. 9 No. 5 (2019): UED JOURNAL OF SOCIAL SCIENCES, HUMANITIES AND EDUCATION
Abstract
Cancer is the second most common disease causing human deaths worldwide. Recent studies have disclosed that medicinal plants exhibit anticancer activity through various mechanisms. The present study is aimed at determining cytotoxicities from the leaf extracts of C. quadrangulare and C. inerme, and investigating their extracted secondary metabolites. Phytochemical screening confirmed the presence of phyto-constituents such as phenols, flavonoids, tannins, triterpenoids, saponins, and steroids in C. quadrangulare leaves whereas alkaloids, phenols, flavonoids, tannins, coumarins, triterpenoids, saponins, and steroids were found in C. inerme leaves. The results indicated a different level of cytotoxic activity against MCF-7 and HepG2 cancer cell lines using C. quadrangulare and C. inerme crude or fractionated extracts. Ethyl acetate extraction in both medicinal materials demonstrated higher cytotoxicity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
-
[1] Tagne R. S., Telefo B. P., Nyemb J. N., Yemele D. M., Njina S. N., Goka S. M., Lienou L. L., Nwabo Kamdje A. H., Moundipa P. F., Farooq A. D. (2014). Anticancer and antioxidant activities of methanol extracts and fractions of some Cameroonian medicinal plants. Asian Pacific Journal of Tropical Medicine, 7(1), 442-447.
[2] Aruoma O. I. (1998). Free radicals, oxidative stress, and antioxidants in human health and disease. Journal of the American Oil Chemists' Society, 75(2), 199-212.
[3] Sumitra C., Nagani K. (2013). In vitro and in vivo methods for anticancer activity evaluation and some Indian medicinal plants possessing anticancer properties: an overview. Journal of Pharmacognosy and Phytochemistry, 2(2), 140-152.
[4] Rajesh R., Chitra K., Paarakh P. M., Chidambaranathan N. (2011). Anticancer activity of aerial parts of Aerva lanata Linn Juss ex Schult against Dalton's Ascitic Lymphoma. European Journal of Integrative Medicine, 3(3), 245-250.
[5] Greenwell M., Rahman P. K. (2015). Medicinal Plants: Their Use in Anticancer Treatment. International journal of pharmaceutical sciences and research, 6(10), 4103-4112.
[6] Shrestha P. M., Dhillion S. S. (2003). Medicinal plant diversity and use in the highlands of Dolakha district, Nepal. Journal of Ethnopharmacology, 86(1), 81-96.
[7] Ochwang’I D. O., Kimwele C. N., Oduma J. A., Gathumbi P. K., Mbaria J. M., Kiama S. G. (2014). Medicinal plants used in treatment and management of cancer in Kakamega County Kenya. Journal of Ethnopharmacology, 151, 1040-1055.
[8] Esmail A. A. (2016). Chemical Constituents and Pharmacological Effects of Clerodendrum inerme-A Review. SMU Medical Journal, 3(1), 129-153.
[9] Roy, R., Singh R. K., Shyamal K. J., Sarkar A., Gorai D. (2014). Combretum quadrangulare (Combretaceae): Phytochemical Constituents and Biological activity. Indo American Journal of Pharmaceutical Research, 4(8),: 3416-3427.
[10] Nopsiri W., Chansakaow S., Putiyanan S., Natakankitkul S. S., Santiarworn D. (2014). Antioxidant and anticancer activities from leaf extracts of four Combretum species from Northern Thailand. Chiang Mai University Journal of Natural Sciences, 13(2), 195-205.
[11] Khan S. A., Kanwal,S., Rizwan K., Shahid S. (2018). Enhanced antimicrobial, antioxidant, in vivo antitumor and in vitro anticancer effects against breast caner cell line by green synthesized un-doped SnO2 and Co-doped SnO2 nanoparticles from Clerodendrum inerme. Microbial Pathogenesis, 125, 366-384.
[12] Thi-Phuong Nguyen, Thuc-Huy Duong, Huu-Hung Nguyen. (2018). Cytotoxic activity of Combretum quadrangulare leaf extracts on HepG2 cancer cell line. Tạp chí Khoa học & Công nghệ ĐH Nguyễn Tất Thành, 31-33.
[13] Ministry of Health (2017). Vietnam Pharmacopoeia 5th Edition. Medical Publishing House, Hanoi.
[14] Ciulei I. (1982). Methodology for Analysis of Vegetables Drugs. Ministry of Chemical Industry; Bucarest, Roumania, 67.
[15] Ogbole O. O., Segun P. A., Adeniji A. J. (2017). In vitro cytotoxic activity of medicinal plants from Nigeria ethnomedicine on Rhabdomyosarcoma cancer cell line and HPLC analysis of active extracts. BMC complementary and alternative medicine, 17(1), 494.
[16] Aye M. M., Aung H. T., Sein M. M., Armijos C. (2019). A Review on the Phytochemistry, Medicinal Properties and Pharmacological Activities of 15 Selected Myanmar Medicinal Plants. Molecules (Basel, Switzerland), 24(2), 293.
[17] Tungmunnithum D., Thongboonyou A., Pholboon A., Yangsabai A. (2018). Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines (Basel, Switzerland), 5(3), 93.
[18] Yuan C. S., Wang C. Z., Wicks S. M., Qi L. W. (2010). Chemical and pharmacological studies of saponins with a focus on American ginseng. Journal of ginseng research, 34(3), 160-167.
[19] Morshed, M. A., Uddin, A., Rahman, A., Hasan, T., Roy, S., Amin, A. A. (2011). In vitro antimicrobial and cytotoxicity screening of Terminalia arjuna ethanol extract. Int J Biosci, 1, 31-38.
[20] Rajandeep K., Kapoor K., Harpreet K. (2011). Plants as a source of anticancer agents. Journal of Natural Products Plant Resource, 1(1), 119-124.
[21] Kalavathi R., Sagayagiri R. (2016). Anticancer Activity Of Ethanolic Leaf Extract Of Clerodendrum Inerme Against Lung Adenocarcinoma Epithelial Cell Line. European Journal of Molecular Biology and Biochemistry, 3(2), 69-72.
[22] Kalavathi R., Sagayagiri R. (2016). Anticancer and Cytotoxicity Activities of Clerodendrum Inerme Against Human Cervical Carcinoma and Liver Cancer Cell Lines. American Journal of Biological and Pharmaceutical Research, 3(2), 46-49.
[23] Liu K., Gao H., Wang Q., Wang L., Zhang B., Han Z. Gao M. (2018). Hispidulin suppresses cell growth and metastasis by targeting PIM1 through JAK2/STAT3 signaling in colorectal cancer. Cancer Science, 109(5), 1369-1381.
[24] Yang J. M, Hung C. M., Fu C. N., Lee J. C., Huang C. H., Yang M. H., Lin C. H., Kao J. Y., Way T. D. (2010). Hispidulin Sensitizes Human Ovarian Cancer Cells to TRAIL-Induced Apoptosis by AMPK Activation Leading to Mcl-1 Block in Translation. J. Agric. Food Chem., 58(18), 10020-10026.