Date Log
EFFECT OF SUBSTRATE MODIFICATION ON PROPERTIES OF THERMALLY EVAPORATED BARIUM DISILICIDE THIN-FILMS
Corresponding Author(s) : Mai Thi Kieu Lien
UED Journal of Social Sciences, Humanities and Education,
Vol. 9 No. 5 (2019): UED JOURNAL OF SOCIAL SCIENCES, HUMANITIES AND EDUCATION
Abstract
Orthorhombic BaSi2 films were grown successfully on flat and modified Ge substrates the by thermal evaporation method at 500 oC with an a-Si supply layer. The obtained results showed that within a short etching time te (less than 15 min), the substrate modification had a negligible impact on improving the crystalline quality and optical properties of the BaSi2 films in comparison with using flat substrate. When te is 15 min, the crystalline quality as well as optical properties were improved significantly. However, the crystalline quality degraded whereas the optical properties was still improved as te > 15 min. Therefore, we chose te of 15 min as the optimized condition for surface modification of Ge substrate. Photoresponse properties of evaporated BaSi2 films on modified (with te = 15 min) and flat Ge substrates showed that the film grown on the former has better properties than that on the latter. We also confirmed the bandgap of thermally-evaporated BaSi2 films at 1.29 eV. These results suggest the potential application of the BaSi2 thin-film evaporated on modified Ge substrate as an absorber for thin-film solar cells.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
-
[1] T. Suemasu and N. Usami (2017). Exploring the potential of semiconducting BaSi2 for thin-film solar cell applications. J. Phys. D. Appl. Phys, 50, 23001.
[2] J. Britt and C. Ferekides (1993). Thin-film CdS/CdTe solar cell with 15.8% efficiency. Appl. Phys. Lett, 62, 2851-2852.
[3] X. Wu (2004). High-efficiency polycrystalline CdTe thin-film solar cells. Sol. Energy, 77, 803-814.
[4] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi (2008). 19.9%-Efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Prog. Photovolt, 16, 235-239.
[5] P. Jackson, D. Harikos, E. Lotter, S. Paetel, R. Menner, W. Wischmann, and M. Powalla (2011). New world record efficiency for Cu(In,Ge)Se2 thin-film solar cells beyond 20%. Prog. Photovolt, 19, 894-897.
[6] J. Evers and A. Weiss (1974). Electrical properties of alkaline earth disilicides and digermanides. Mater. Res. Bull, 9, 549-553.
[7] T. Nakamura, T. Suemasu, K. Takakura, F. Hasegawa, A. Wakahara and M. Imai (2002). Investigation of the energy band structure of orthorhombic BaSi2 by optical and electrical measurements and theoretical calculations. Appl. Phys. Lett, 81, 1032-1034.
[8] L. I. Ivanenko, V. L. Shaposhnikov, A. B. Filonov, A. V. Krivosheeva, V. E. Borisenko, D. B. Migas, L. Miglio, G. Behr, and J. Schumann (2004). Electronic properties of semiconducting silicides: Fundamentals and recent predictions. Thin Solid Films, 461, 141-147.
[9] K. Morita, Y. Inomata, and T. Suemasu (2006). Optical and electrical properties of semiconducting BaSi2 thin films on Si substrates grown by molecular beam epitaxy. Thin Solid Films, 508, 363-366.
[10] S. Kishino, T. Imai, T. Iida, Y. Nakaishi, M. Shinada, Y. Takanashi, and N. Hamada (2007). Electronic and optical properties of bulk crystals of semiconducting orthorhombic BaSi2 prepared by the vertical Bridgman method. J. Alloys Compd, 428, 22-27.
[11] K. Toh, T. Saito, and T. Suemasu (2011). Optical absorption properties of BaSi2 epitaxial films grown on a transparent silicon-on-insulator substrate using molecular beam epitaxy. Jpn. J. Appl. Phys, 50, 68001.
[12] K. O. Hara, Y. Nakagawa, T. Suemasu, and N. Usami (2015). Realization of single-phase BaSi2 films by vacuum evaporation with suitable optical properties and carrier lifetime for solar cell applications. Jpn. J. Appl. Phys, 54, 07JE02.
[13] M. Baba, K. Toh, K. Toko, N. Saito, N. Yoshizawa, K. Jiptner, T. Sekiguchi, K. O. Hara, N. Usami, and T. Suemasu (2012). Investigation of grain boundaries in BaSi2 epitaxial films on Si (111) substrates using transmission electron microscopy and electron-beam-induced current technique. J. Cryst. Growth, 348, 75-79.
[14] K.O. Hara, N. Usami, K. Nakamura, R. Takabe, M. Baba, K. Toko, and T. Suemasu (2013). Determination of bulk minority-carrier lifetime in BaSi2 earth-abundant absorber films by utilizing a drastic enhancement of carrier lifetime by post-growth annealing. Appl. Phys. Express, 6.
[15] R. A. McKee, F. J. Walker, J. R. Conner, and R. Raj (1993). BaSi2 and thin film alkaline earth silicides on silicon. Appl. Phys. Lett, 63, 2818-2820.
[16] Y. Nakagwa, K. O. Hara, T. Suemasu, and N. Usami (2015). Fabrication of single-phase BaSi2 thin films on silicon substrates by vacuum evaporation for solar cell applications. Jpn. J. Appl. Phys, 54, 08KC03.
[17] Y. Nakagawa, K. O. Hara, T. Suemasu, and N. Usami (2016). On the mechanism of BaSi2 thin film formation on Si substrate by vacuum evaporation. Procedia Eng, 141, 23-26.
[18] C. T. Trinh, Y. Nakagawa, K. O. Hara, R. Takabe, T. Suemasu, and N. Usami (2016). Photoresponse properties of BaSi2 film grown on Si (100) by vacuum evaporation. Mater. Res. Express, 3, 76204.
[19] K. O. Hara, J. Yamanaka, K. Arimoto, K. Nakagawa, T. Suemasu, and N. Usami (2015). Structural and electrical characterizations of crack-free BaSi2 thin films fabricated by thermal evaporation. Thin Solid Films, 595, 68-72.
[20] C. T. Trinh, Y. Nakagawa, K. O. Hara, Y. Kurokawa, R. Takabe, T. Suemasu, and N. Usami (2017). Growth of BaSi2 film on Ge (100) by vacuum evaporation and its photoresponse properties. Jpn. J. Appl. Phys, 56.
[21] J. Yeom, D. Ratchford, C. R. Field, T. H. Brintlinger, and P. E. Pehrsson (2014). Decoupling diameter and pitch in silicon nanowire arrays made by metal-assisted chemical etching. Adv. Funct. Mater, 24,106-116.
[22] F. Yuan, Z. Li, T. Zhang, W. Miao, and Z. Zhang (2014). Enhanced light absorption of amorphous silicon thin film by substrate control and ion irradiation. Nanoscale Res. Lett, 9:173, 1-5.
[23] D. Ratchford, J. Yeom, J. P. Long, and P. E. Pehrsson (2015). Influence of inhomogeneous porosity on silicon nanowire Raman enhancement and leaky mode modulated photoluminescence. Nanoscale, 7, 4124-4133.
[24] R. Loudon (1964). The Raman effect in crystals. Adv. Phys, 13:52, 423-482.
[25] K. O. Hara, N. Usami, K. Toh, M. Baba, K. Toko, and T. Suemasu (2012). Investigation of the recombination mechanism of excess carriers in undoped BaSi2 films on silicon. J. Appl. Phys, 112, 083108.