Date Log
SUBSTITUENT EFFECTS ON THE ANTIOXIDANT ACTIVITY OF MONOSUBSTITUTED 3,3’-DIINDOLYLMETHANE: A DFT STUDY
Corresponding Author(s) : Mai Van Bay
UED Journal of Social Sciences, Humanities and Education,
Vol. 9 No. 5 (2019): UED JOURNAL OF SOCIAL SCIENCES, HUMANITIES AND EDUCATION
Abstract
3,3’-diindolylmethane (DIM) is an indole compound with proven health benefits and thus potential preventive medicine and therapeutic applications. Herein, the origins of the substituent effects on the antioxidant activity of monosubstituted 3,3’-diindolylmethanes (DIMs) were studied in silico by calculating their thermochemical properties using the RO)B3LYP/6−311++G(2df,2p)//B3LYP/6−31G(d) method. It was found that the compounds 2-NHMeDIM, 2-OH-DIM and 2−MeO-DIM have the lowest BDE(N1−H) values (78.4−78.9 kcal.mol−1 ), while that for the C8−H bond is observed in the 2-HO-DIM compound (67.0 kcal.mol-1). The presence of substitutes can decrease the ionization energies of the DIMs, however the effects of substitutes on the proton affinity were not clearly observed. The investigation on the HOO• radical scavenging following the hydrogen atom transfer mechanism indicated that the compound 2-NHMe-DIM has the highest rate constant with k = 9.72×109 L.mol−1.s−1. Thus, it is suggested that the 2-NHMe-DIM is a powerful antioxidant.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
-
[1] Ingold K. U., Pratt D. A (2014). Advances in radical-trapping antioxidant chemistry in the 21st century: a kinetics and mechanisms perspective. Chem. Rev, 114, 9022-9046.
[2] Finkel T., Holbrook N. J (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408, 239-247.
[3] Dhaouadi Z., Nsangou M., Garrab N., Anouar E., Marakchi K., Lahmar S. DFT study of the reaction of quercetin with and· OH radicals. J. Mol. Struct: THEOCHEM 2009, 904, 35-42.
[4] Arnao M., Sanchez‐Bravo J., Acosta M (1996). Indole‐3‐carbinol as a scavenger of free radicals. IUBMB Life 1996, 39, 1125-1134.
[5] Benabadji S. H., Wen R., Zheng J.-B., Dong X.-C., Yuan S.-G (2004). Anticarcinogenic and antioxidant activity of diindolylmethane derivatives. Acta pharmacol Sin, 25, 666-671.
[6] Błoch-Mechkour A. Bally T. Sikora A. Michalski R. Marcinek A. Gebicki, J (2010). Radicals and radical ions derived from indole, indole-3-carbinol and diindolylmethane. J. Phys. Chem. A, 114, 6787-6794.
[7] Fahey J. W., Zalcmann A. T., Talalay P (2001). The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry, 56, 5-51.
[8] Vo Q. V., Trenerry C., Rochfort S., Wadeson J., Leyton C., Hughes A. B (2014). Synthesis and anti-inflammatory activity of indole Glucosinolates. Bioorg. Med. Chem., 22, 856-864.
[9] Lee M.-K., Chun J.-H., Byeon D. H.; Chung S.-O., Park S. U., Park S., Arasu, M. V., Al-Dhabi N. A., Lim Y.-P., Kim S.-J (2014). Variation of glucosinolates in 62 varieties of Chinese cabbage (Brassica rapa L. ssp. pekinensis) and their antioxidant activity. LWT-Food Science and Technology, 58, 93-101.
[10] Yu L., Gao B., Li Y., Wang T. T., Luo Y., Wang J., Yu L. L (2018). Home food preparation techniques impacted the availability of natural antioxidants and bioactivities in kale and broccoli. Food Funct, 9, 585-593.
[11] Najafi M., Najafi M., Najafi H (2012). DFT/B3LYP study of the substituent effects on the reaction enthalpies of the antioxidant mechanisms of Indole-3-Carbinol derivatives in the gas-phase and water. Comput. Theor. Chem, 999, 34-42.
[12] Galano A., Mazzone G., Alvarez-Diduk, R., Marino T., Alvarez-Idaboy J. R., Russo N (2016). Food antioxidants: chemical insights at the molecular level. Annu. Rev. Food Sci. Technol, 7, 335-352.
[13] Wright J. S., Johnson E. R., DiLabio G. A (2001). Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J. Am. Chem. Soc, 123, 1173-1183.
[14] Rimarčík J., Lukeš V., Klein E., Ilčin M (2010). Study of the solvent effect on the enthalpies of homolytic and heterolytic N–H bond cleavage in p-phenylenediamine and tetracyano-p-phenylenediamine. J. Mol. Struct: THEOCHEM, 952, 25-30.
[15] Lee C., Yang W., Parr R. G (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phy. Rev B, 37, 785.
[16] Vo Q. V., Nam P. C., Bay M. V., Thong N. M., Cuong N. D., Mechler, A (2018). Density functional theory study of the role of benzylic hydrogen atoms in the antioxidant properties of lignans. Sci. Rep., 8, 12361.
[17] M. J. Frisch, G. W. T., H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. C., G. Scalmani, V. Barone, B. Mennucci, G. A. P., H. Nakatsuji, M. Caricato, X. Li, H. P. H., A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. H., M. Ehara, K. Toyota,; R. Fukuda, J. H., M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. N., T. Vreven, J. A. Montgomery Jr,, J. E. Peralta, F. O., M. J. Bearpark, J. Heyd,, E. N. Brothers, K. N. K., V. N. Staroverov, R. Kobayashi,, J. Normand, K. R., A. P. Rendell, J. C. Burant, et al (2009). Gaussian 09, Gaussian, Inc., Wallingford CT.
[18] Nam P.-C., Nguyen M. T., Chandra A. K (2005). The C− H and α (C− X) Bond Dissociation Enthalpies of Toluene, C6H5-CH2X (X= F, Cl), and Their Substituted Derivatives: A DFT Study. J. Phys. Chem. A, 109, 10342-10347.
[19] Baschieri A., Pulvirenti L., Muccilli V., Amorati R., Tringali C (2017). Chain-breaking antioxidant activity of hydroxylated and methoxylated magnolol derivatives: the role of H-bonds. Org. Biomol. Chem, 15, 6177-6184.
[20] Lucarini M., Pedulli G. F., Guerra M (2004). A Critical Evaluation of the Factors Determining the Effect of Intramolecular Hydrogen Bonding on the O-H Bond Dissociation Enthalpy of Catechol and of Flavonoid Antioxidants. Chem. Eur. J., 10, 933-939.
[21] Thong N. M., Duong T., Pham L. T., Nam P. C (2014). Theoretical investigation on the bond dissociation enthalpies of phenolic compounds extracted from Artocarpus altilis using ONIOM (ROB3LYP/6-311++ G (2df, 2p): PM6) method. Chem. Phys. Lett., 613, 139-145.
[22] Thong N. M., Quang D. T., Bui N. H. T., Dao D. Q., Nam P. C (2015). Antioxidant properties of xanthones extracted from the pericarp of Garcinia mangostana (Mangosteen): a theoretical study. Chem. Phys. Lett., 625, 30-35.
[23] Bartmess J. E (1994). Thermodynamics of the electron and the proton. J. Phys. Chem., 98, 6420-6424.
[24] Urbaniak A., Szeląg M., Molski M (2013). Theoretical investigation of stereochemistry and solvent influence on antioxidant activity of ferulic acid. Comput. Theor. Chem., 1012, 33-40.
[25] Donald W. A., Demireva M., Leib R. D., Aiken M. J., Williams, E. R (2010). Electron Hydration and Ion− Electron Pairs in Water Clusters Containing Trivalent Metal Ions. J. Am. Chem. Soc., 132, 4633-4640.
[26] Irikura K. K., Johnson R. D., Kacker R. N (2005). Uncertainties in scaling factors for ab initio vibrational frequencies. J. Phys. Chem. A, 109, 8430-8437.
[27] Alecu I., Zheng J., Zhao Y., Truhlar D. G (2010). Computational thermochemistry: scale factor databases and scale factors for vibrational frequencies obtained from electronic model chemistries. J. Chem. Theory Comput., 6, 2872-2887.
[28] Nam P. C., Vo V. Q., Nguyen M. T., Pham T. T. T (2017). Bond dissociation enthalpies in benzene derivatives and effect of substituents: an overview of density functional theory (B3LYP) based computational approach. Vietnam J. Chem. Inter. Edition, 55, 679-691.
[29] Galano A., Alvarez‐Idaboy J. R (2013). A computational methodology for accurate predictions of rate constants in solution: Application to the assessment of primary antioxidant activity. J. Comput. Chem., 34, 2430-2445.
[30] Prior R. L., Wu X., Schaich K (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem., 53, 4290-4302.
[31] Alberto M. E., Russo N., Grand A., Galano A (2013). A physicochemical examination of the free radical scavenging activity of trolox: Mechanism, kinetics and influence of the environment. Phys. Chem. Chem. Phys., 15, 4642-4650.
[32] Litwinienko G., Ingold K (2003). Abnormal solvent effects on hydrogen atom abstractions. 1. The reactions of phenols with 2, 2-diphenyl-1-picrylhydrazyl (dpph•) in alcohols. J. Org. Chem. , 68, 3433-3438.
[33] Ngo T. C., Thi Hau N., Dao D. Q (2019). Radical Scavenging Activity of Natural-based Cassaine Diterpenoid Amides and Amines. J. Chem. Inf. Model.