Date Log
EVALUATION OF PLASMON RESONANCE STIMULATION OF METALS Pd, Ti AND Cr
Corresponding Author(s) : Ngo Khoa Quang
UED Journal of Social Sciences, Humanities and Education,
Vol. 7 No. 3 (2017): UED JOURNAL OF SOCIAL SCIENCES, HUMANITIES AND EDUCATION
Abstract
We have evaluated the plasmon resonance stimulation capability of the metals Pd, Ti and Cr under different wavelengths. The theoretical calculation results based on the p-polarized light spreading along the metal surface was employed to clarify elements that influence the existence of stimulation of plasmon resonance waves. We have also examined in detail the speading distance and the decay length of the electric field amplitude in the directions that are parallel and perpendicular with the surface of the metal under study. We have found that the plasmon resonance stimulation reached a high level of efficiency when the wavelength in use ranged from 600 nm to 1200 nm. The findings of the research are of important significance to applications related to the plasmonic chip technology.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
-
[1] Maier, S. A. (2007). Plasmonics: Fundamentals and Applications. Springer Science.
[2] Valev, V. K. (2012). Characterization of nanostructured plasmonic surfaces with second harmonic generation. Langmuir, 28, 15454-15471.
[3] Cai, W., Chettiar, U. K., Kildishev A. V. and Shalaev V. M. (2007). Optical cloaking with metamaterials. Nat. Photonics, 1(4), 224-227.
[4] Liu, N., Tang, M. L., Hentschel, M., Giessen, H. and Alivisatos, A. P. (2011). Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater, 10, 631-636.
[5] Pendry, J. B. (2000). Negative refraction makes a perfect lens. Phys. Rev. Lett, 85, 3966-3969.
[6] Wang, T., Narayanan, P., Leuchtenburg, M. and Moritz, C. A. (2008). A nanoscale fabric for nanoscale microprocessors. C.A. Nanoelectronics Conference (2nd IEEE International), 989-994.
[7] Ozbay, E. (2006). Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 13, 189-193.
[8] Srivastava, N. and Banerjee, K. (2004). Interconnect challenges for nanoscale electronic circuits. JOM 56, 30-31.
[9] Zia, R., Schuller, J. A., Chandran, A. and Brongersma, M. L. (2006). Plasmonics: the next chip-scale technology. Materialstoday, 9(7), 20-27.
[10] Rakic, A. D., Djurišic, A. B., Elazar, J. M. and Majewski M. L. (1998). Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37, 5271-5283
[11] Novotny, L. and Hecht, B. (2006). Principles of Nano-Optics. Cambridge University Press.
[12] Sambles, J. R., Bradbery, G. W. and Yang, F. (1991). Optical excitation of surface plasmons: An introduction. Contemp. Phys. 32, 173-183.
[13] Sukharev, M., Sung, J., Spears, K. G. and Seideman, T. (2007). Optical properties of metal nanoparticles with no center of inversion symmetry: Observation of volume plasmons. Phys. Rev. B 76, 184302-1-184302-5.
[14] Husu, H., Mäkitalo, J., Laukkanen, J., Kuittinen, M. and Kauranen, M. (2010). Particle plasmon resonances in L-shaped gold nanoparticles. Opt. Express 18, 16601-16606.