Date Log
THE RING WHOSE MODULE CLASS IS EMBEDDED IN PROJECTIVE MODULE
Corresponding Author(s) : Banh Duc Dung
UED Journal of Social Sciences, Humanities and Education,
Vol. 2 No. 2 (2012): UED JOURNAL OF SOCIAL SCIENCES, HUMANITIES AND EDUCATION
Abstract
Faith and Walker (1967) characterized QF rings as the class of rings if and if every right injective module is projective. It can be implied that if every right R-module is embedded in a projective module or, equivalently, in a free module, then R is QF. The question is if not all the module but a class of it is embedded, how the ring R is. The ring of which every finitely generated (cyclic) right R-module is embedded in a free module is called right FGF (resp. CF). There have been two conjectures:
Right FGF ring is QF (FGF’s conjecture)?
Right CF ring is artinian (CF’s conjecture)?
If the CF’s conjecture is true, then so is FGF’s conjecture because a right artinian and FGF ring are QF. In this paper, we introduce these problems generally and then pose some open questions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
-
[1] F. W. Anderson and K. R. Fuller (1992), Rings and categories of modules, Second Edition, Graduate Text in Math., Vol. 13, Springer-Verlag, Berlin - Heidelberg - New York.
[2] B. Bj rk (1969), Rings satisfying a minimal condition on principal ideals, J. Reine Angew. Math., 236, 112-119.
[3] Dung, B. D., Thoang, L. D., Sanh, N. V. (2008), When is a semiperfect rings pseudo-Frobenius?, Asian J. of Math., 1 (3), 353-358.
[4] C. Faith (1976), Algebra II: Ring Theory, Grundl. Math. Wiss. 191, Springer-Verlag.
[5] C. Faith (1982), Embedding modules in projectives. A report on a problem, Lecture Notes in Mathematics Vol. 951, 21-40. Springer-Verlag, Berlin-New York.
[6] C. Faith (1990), Embedding torsionless modules in projectives. A report on a problem, Lecture Notes, Inst. de Recerca Mat., Autonoma U. de Barcelona.
[7] C. Faith and D.V. Huynh (2002), When self-injective rings are QF: A report on a problem, J. Algebra Appl. 1, 75-105.
[8] C. Faith and E. A. Walker (1967), Direct-sum representations of injective modules, J. Algebra 5, 203-221.
[9] J. L. Gómez Pardo (1985), Embedding cyclic and torsionfree modules in free modules, Arch. Math. 44, 503-510.
[10] J. L. Gómez Pardo and P. A. Guil Asensio (1997), Rings with finite essential socle, Proc. Am. Math. Soc. 125, 971-977.
[11] J. L.Gómez Pardo and P. A. Guil Asensio (1997), Essential embeddings of cyclic modules in projectives, Trans. Am. Math. Soc. 349, 4343-4353.
[12] T. Y. Lam (1991), A First Course in Noncommutative Rings, Graduate Text in Math., Vol. 131, Springer-Verlag, Berlin - Heidelberg - New York.
[13] L. Levy (1963), Torsion-free and divisible modules over non-integral-domains, Canadian J. Math. 15, 132-151.
[14] P. Menal (1983), On the endomorphism ring of a free module, Publ. Mat. Univ. Autónoma Barcelona 27, 141-154.
[15] W. K. Nicholson and M. F. Yousif (2003), Quasi-Frobenius rings, Cambridge Univ. Press.
[16] B. Osofsky (1966), A generalization of quasi-Frobenius rings, J. Algebra 4, 373-387.
[17] T. S.Tolskaya (1970), When are all cyclic modules essentially embedded in free modules?, Mat. Issled. 5, 187-192.