Date Log
Submitted
Jul 17, 2020
Published
Sep 26, 2019
GENERAL COVER OF MODULES AND SOME RELATED RESULS
Corresponding Author(s) : Nguyen Quoc Tien
nguyenquoctien1982@gmail.com
UED Journal of Social Sciences, Humanities and Education,
Vol. 9 No. 3 (2019): UED JOURNAL OF SOCIAL SCIENCES, HUMANITIES AND EDUCATION
Abstract
In this studying, we introduce the concept(definition) of general cover of a module, endomorphism coinvariant module and some of their properties. The paper also provides some results concerning the dual of Schroder-Bernstein problem for endomorphism coinvariant modules.
Keywords
general cover; projective cover; automorphism coinvariant module; Schroder-Bernstein's Theorem.
Dao Thi Trang, Nguyen Quoc Tien, & Truong Thi Thuy Van. (2019). GENERAL COVER OF MODULES AND SOME RELATED RESULS. UED Journal of Social Sciences, Humanities and Education, 9(3), 12-18. https://doi.org/10.47393/jshe.v9i3.121
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
References
-
[1] S. Singh, A.K. Srivastava (2012). Dual automorphism-invariant modules. J. Algebra, 371, 262-275.
[2] T.K. Lee, Y. Zhou (2013). Modules which are invariant under automorphisms of their injective hulls. J. Algebra Appl., 12 (2).
[3] P. A. Guil Asensio, D. K. Tutuncu and A. K. Srivastava (2015). Modules invariant under automorphisms of their covers and envelopes. Israel Journal of Mathematics, 206, 457-482.
[4] R. T. Bumby (1965). Modules which are isomorphic to submodules of each other. Arch. der Math., 16, 184-185.
[5] P. A. Guil Asensio, B. Kalebogaz, A. K. Srivastava (2018). The Schroder-Bernstein problem for modules. J.Algebra, 498(15), 153-164.
[6] J. Xu (1996). Flat Covers of Modules. Lecture Notes in Mathematics, 1634. Springer-Verlag, Berlin.
[7] S. E. Dickson and K. R. Fuller (1969). Algebras for which every indecomposable right module is invariant in its injective envelope. Pacic Journal of Mathematics, 31, 655-658.
[8] N. Er, S. Singh, A.K. Srivastava (2013). Rings and modules which are stable under automorphisms of their injective hulls. J. Algebra, 379, 223-229.
[9] L. E. T. Wu and J. P. Jans (1967). On quasi-projectives. Illinois Journal of Mathematics, 11 (1967), 439-448.
[10] Alberto Facchini (2019). Semilocal Categories and Modules with Semilocal Endomorphism Rings. Progress in Mathematics, 331.