Date Log
APPLYING THE SOFTWARE MATHEMATICA IN NEWTON’S METHOD TO FIND APPROXIMATE SOLUTIONS OF EQUATIONS
Corresponding Author(s) : Le Hai Trung
UED Journal of Social Sciences, Humanities and Education,
Vol. 5 No. 4B (2015): UED JOURNAL OF SOCIAL SCIENCES, HUMANITIES AND EDUCATION
Abstract
This paper presents the application of the software Mathematica to find approximate solutions of the equation by means of the Newton’s method (also known as the tangent’s method) with regard to specific examples that cannot be dealt with through algebraic transformations. The operation in the software is conducted through the following steps: entering the equation whose root is to be looked for together with errors, drawing charts to determine dissociation distances at the request of the problem viadedicated commands (in some concrete cases, the dissociation process can be further specified), running the programming in Mathematica for the computer to calculate and obtain the approximate solutions of the equation with the given errors, checking the results obtained.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
-
[1] Bakhvalov N (1977), Numerical Methods: Analysis, Algebra, Ordinary Differential Equations, MIR.
[2] Бакушинский А, Гончарский А (1989), Численные методы, Из-во Московского университета.
[3] Бахвалов Н, Жидков Н, Кобельков Г (2012), Численные методы, Из-во «Лаборатория знаний».
[4] Самарский А, Гулин А (1989), Численные методы, Из-во Наука.
[5] Вержбицкий В (2001), Численные методы, Математический анализ и обыкновенные дифференциальные уравнения, Москва «Высшая школа».
[6] Doãn Tam Hòe (2008), Toán học tính toán, Nhà xuất bản Giáo dục.
[7] Lê Hải Trung, Lê Văn Dũng, Huỳnh Thị Thúy Phượng (2011), Về bài toán truyền nhiệt trong môi trường Mathematica, Tạp chí Khoa học & Công nghệ, Số: 6[47], Quyển 1, Trang: 1112-120.
[8] Lê Hải Trung (2011), Ứng dụng phần mềm Mathematica cho bài toán truyền nhiệt, Đ2011-03-07
[9] Lê Hải Trung, Huỳnh Thị Thúy Phượng, Nguyễn Văn Hiệu (2011), Ứng dụng phần mềm Mathematica cho lời giải của bài toán truyền nhiệt trong không gian hai chiều, Tạp chí Khoa học & Công nghệ, Số: 6[47], Quyển 2, Trang: 133-139.