UED JOURNAL OF SOCIAL SCIENCES, HUMANITIES & EDUCATION # ON THE RATE OF CONVERGENCE IN SOME MEAN MARTINGALE CENTRAL LIMIT THEOREMS Received: 25-08-2019 Accepted: 10 – 10 – 2019 http://jshe.ued.udn.vn/ Le Van Dung^{a*}, Ton That Tu^a **Abstract:** Let $(X_k; 1 \le k \le n)$ be a sequence of martingale differences with respect to σ -fields $F_0 \subset F_1 \subset ... \subset F_n$, where the variance of X_k may be finite or infinite. The aim of this article is to establish the rate of convergence in the mean central limit theorems for the sum $S_n = X_1 + ... + X_n$ by uniting the method of Bolthausen [2], Haeusler [8] and the result of Röllin [10]. Key words: infinite variance; the central limit theorem; random variables; convergence rate; martingale difference. #### 1. Introduction Let $(X_k; 1 \not\in k \not\in n)$ be a sequence of square integrable martingale difference with respect to s-fields $F_0 \not 1 F_1 \not 1 \dots \not 1 F_n$, that is, suppose that X_k is measurable with respect to F_{k-1} with $E(X_k^2) < \Psi$ and $E(X_k \mid F_{k-1}) = 0$ for all $1 \not\in k \not\in n$. Denote F_n and F be distribution functions of $S_n = X_1 + \dots + X_n$ and standard normal N(0,1), respectively. Assume that $E(\mid X_i \mid^2) < \Psi$ for all $i \not 3 1$, according to Theorem 3.2 of Agnew [1], "the conditional Linderberg condition" $$\mathring{\mathbf{a}}^{n} E(X_{i}^{2}I(|X_{i}| \geq e) | \mathbf{F}_{i-1}) \frac{3}{4} \frac{9}{4} \otimes 0 \text{ as } n \otimes \Psi$$ for each e > 0 and "the conditional normalizing condition" ^a The University of Danang - University of Science and Education *Corresponding author Le Van Dung Email: lvdung@ued.udn.vn $\overset{n}{\hat{\mathbf{a}}} E(X_i^2 \mid \mathbf{F}_{i-1}) \frac{3}{4} \frac{9}{4} \otimes 1 \text{ as } n \otimes \Psi,$ together imply the mean central limit theorem $$\|F_n - F\|_1 = \partial_i |F_n(x) - F(x)| dx \otimes 0 \text{ as } n \otimes \Psi.$$ Obviously, "the conditional Linderberg condition" is satisfied if for some d > 0, "the Liapounov condition of order 2 + 2d" $$\overset{\circ}{\mathbf{a}} E(|X_i|^{2+2d}) \frac{3}{4} \frac{3}{4} \otimes 0 \text{ as } n \otimes \Psi \text{ holds.}$$ The rate of convergence in the central limit theorem was studied by many authors. In 1982, Bolthausen [2] established the rate of convergence in central limit theorems for bounded martingale difference sequences in the Kolmogorov metric (d_K). Then, Mourrat [9] generalized this result. Haeusle [7, 8], El Machkouri and Ouchti [6] extended the results of Bolthausen [2] to unbounded martingale difference sequences. The rate at which $||F_n - F||_1$ converges to zero has studied by Dung et. al. [4], Röllin [10] and other authors under the assumption of bounded third order moments. Dung and Son [4] established the rate of convergence in the central limit theorem for arrays of martingale difference random vectors in the bounded Lipschitz metric. In this article, we unite the method of Bolthausen [2], Haeusler [8] and the result of Röllin [10] to establish the convergence rate to zero of $||F_n - F||_1$ for general martingale differences sequences under "the Liapounov condition of order 2 + 2d" assumption for some d > 0. The convergence rate to zero of $\|F_n - F\|_1$ for sequences of general martingale differences with infinite variances is also studied. #### 2. Results The Wasserstein distance between two distributions F and G on real line is defined as $$d_{W}(F,G) = \sup_{f \in L_{1}} |E(f(X)) - E(f(Y))|,$$ where L_1 is the set of 1-Lipschitzian functions from i to i, i.e. $$L_1 = \{f : | \mathbb{R} : | f(x) - f(y) | \mathbb{E} | x - y | \}.$$ According to the Kantorovich-Rubinstein theorem (see, e.g., [3], Theorem 11.8.2) we have that $$d_{W}(F,G) = \|F - G\|_{1}$$. It is not difficult to see that for any random variable X, $$d_{K}(F_{X},F)$$ £ $\frac{2}{(2p)^{1/4}} \sqrt{d_{W}(F_{X},F)}$. Let $(X_k; 1 \not\in k \not\in n)$ be a sequence of square integrable martingale difference with respect to s-fields $F_0 i F_1 i ... i F_n$. Without loss of generality we may assume that $s_n = E(X_1^2) + ... + E(X_n^2) = 1$. For $1 \pm k \pm n$, we define $$s_{k}^{2} = E(X_{k}^{2} | F_{k-1}), \quad V_{n}^{2} = \mathop{\mathbf{a}}_{i=1}^{n} s_{i}^{2},$$ $$r_{k+1}^{2} = V_{n}^{2} - V_{k}^{2} = \mathop{\mathbf{a}}_{i=k+1}^{n} s_{i}^{2},$$ where $\bigotimes_{i=k+1}^{n} s_i^2$ is defined to be zero if k+1 > n. Set $$L_{n,d} = \mathop{\circ}_{i=1}^{n} E(|X_{i}|^{2+2d}),$$ $$N_{n,d} = E \left[\stackrel{\text{def}}{\mathbf{S}} V_n^2 - 1 \right]^{1+d} \frac{\ddot{\mathbf{O}}}{\dot{\mathbf{G}}}$$ for some d > 0. Put $$S_n = X_1 + X_2 + ... + X_n$$. For x > 0 we denote $\log(x) = \max\{1, \ln(x)\}$, where $\ln(x)$ is the natural logarithm function. **Theorem 1.** Assume that $V_n = 1$ a.s. Then $$d_{W}(L(S_{n}), N(0, 1))$$ £ $CL_{n,d}^{\frac{1}{2(1+d)}}(1+ |\log L_{n,d}|)$ whenever $L_{n,d} \pm 1$. Proof. For fixed $0 < b \pm 1$, set $$X_{i} \not = X_{i} I(|X_{i}| \not \mathbb{E} b^{1/2} / 2)$$ - $E(X_{i} I(|X_{i}| \not \mathbb{E} b^{1/2} / 2) | F_{i-1}),$ $$S_n \not c = \mathop{\circ}\limits_{i=1}^n X_i \not c.$$ For any function $f \hat{I} L_1$, we have $$|E(f(S_n)) - E(f(N(0,1)))|$$ $$\pounds |E(f(S_n^{\phi})) - E(f(N(0,1)))|$$ $$+ \mathring{a}_{i=1}^{n} E(|X_i| |I(|X_i| > b^{1/2} / 2)).$$ It is obvious that $$\mathring{\mathbf{a}}_{i=1}^{n} E(|X_{i}| I(|X_{i}| > b^{1/2} / 2)) \pounds \frac{C}{b^{(1/2+d)}} L_{n,d}.$$ Then $$|E(f(S_n)) - E(f(N(0,1)))|$$ £ $|E(f(S_n \circ)) - E(f(N(0,1)))| + \frac{C}{h^{(1/2+d)}} L_{n,d}.$ Let $X_{n+1}^{\not c}$, $X_{n+2}^{\not c}$,... be independent random variables with $$P(X_i \not = -b^{1/2}) = P(X_i \not = b^{1/2}) = 1/2$$ for all i ³ n+1, which are independent of F_n . For each i ³ n+1, set $F_i = s(F_n, X_{n+1}, ..., X_i)$. It is clear that the random variable $$t = \max\{k : \overset{k}{a} s_{i}^{2}(X_{i}) \ \text{£ } 1\}$$ is a stopping time with respect to $(F_i; i^3]$ and $n \not\in t \not\in n + [b^{-1}]$, where $[b^{-1}]$ denotes the integer part of b^{-1} . For $i = 1, ..., k = n + [b^{-1}] + 1$, set Thus, $(Z_i; 1 \ \pounds \ k)$ is a sequence of martingale differences adapted to the filtration $\ F_0,...,F_k$. Writing from now on $$s_i \mathcal{E} = s_i^2(Z_i), \quad S_i \mathcal{E} = Z_1 + ... + Z_k.$$ We have that $$\overset{k}{\mathbf{a}} s \overset{k}{\not} = 1, \quad |Z_i| \pounds b^{1/2} \text{ for } i = 1, ..., k,$$ and Therefore, $$|E(f(S_n)) - E(f(N(0,1)))|$$ $$\pounds |E(f(S_k)) - E(f(N(0,1)))| \qquad (0.1)$$ $$+ C(\frac{1}{b^{(1/2+d)}} L_{n,d} + b^{-d/2} L_{n,d}^{1/2}).$$ Put $$V_i \mathcal{E} = \overset{i}{\overset{i}{\alpha}} s \mathcal{E}, r \mathcal{E} = 1 - V_i \mathcal{E}_1 = \overset{k}{\overset{k}{\alpha}} s \mathcal{E}.$$ Now define the sequence of stopping times $$t_{0} = 0$$ $$\begin{split} t_{j} &= \sup\{m^{3} \ 0 : V_{m} \mathcal{E} \ \pounds \ jb\} \text{ for } 1 \pounds \ j \pounds \ [b^{-1}], \\ t_{[b^{-1}]+1} &= k. \end{split}$$ For $t_{j-1} \le i \pounds t_j$, we have $$r_{i} = 1 - V_{i} f_{1}^{2} - 1 - jb.$$ Thus, it follows from Theorem 2.1 of Röllin [10] with $a = (2b)^{1/2}$ that $$|E(f(S_{\bullet})) - E(f(N(0,1)))|$$ £ $$3\mathring{a}_{i=1}^{k} E \begin{cases} \frac{g}{k} |Z_{i}|^{3} & \frac{\ddot{o}_{i}}{\dot{z}_{i}} + 2\sqrt{2}b^{1/2} \\ \frac{g}{k} r f + 2b \frac{\ddot{o}_{i}}{\dot{z}_{i}} \end{cases} = \sqrt{2}b^{1/2}$$ $$=3 \mathop{\mathbf{a}}_{j=1}^{[b^{-1}]+1} \mathop{\mathbf{a}}_{i=t_{j+1}+1}^{t_{j}} E \mathop{\mathbf{g}}_{\mathbf{c}}^{\mathbf{e}} |Z_{i}|^{3} \frac{\ddot{\mathbf{o}}}{\dot{\underline{c}}} \\ +2\sqrt{2}h^{1/2}$$ £ $$3 \stackrel{[b^{-1}]+1}{\overset{j}{a}} \frac{b^{1/2}}{1 - jb + 2b} \stackrel{a}{\underset{i=t_{j-1}+1}{\overset{t_j}{a}}} E(|Z_i|^2)$$ $$=3 \mathop{\bf a}\limits_{j=1}^{[b^{-1}]+1} \frac{b^{1/2}}{1-jb+2b} E \mathop{\bf g}\limits_{{\bf b}=t_{j-1}+1}^{{\bf a}} E(|Z_i|^2 |F_{i-1}) \frac{\ddot{\underline{\bf c}}}{\dot{\underline{\bf c}}} + 2\sqrt{2}b^{1/2}$$ $$=3 \mathop{\rm a}_{j=1}^{[b^{-1}]+1} \frac{b^{1/2}}{1-jb+2b} E\left(V_{i_{j}} - V_{i_{j-1}}\right) + 2\sqrt{2}b^{1/2}$$ £ $$3 \mathop{\mathbf{a}}_{j=1}^{[b^{-1}]+1} \frac{2b^{3/2}}{1-jb+2b} + 2\sqrt{2}b^{1/2}$$ £ $$6b^{1/2} \mathop{\mathbf{a}}_{j=1}^{[b^{-1}]+1} \frac{1}{j} + 2\sqrt{2}b^{1/2}$$ £ $$C(b^{1/2} | \log b | + 2\sqrt{2}b^{1/2})$$ £ $$3 \mathop{\bf a}_{j=1}^{[b^{-1}]+1} \frac{2b^{3/2}}{1 - jb + 2b} + 2\sqrt{2}b^{1/2}$$ Combining this with (1.1) we obtain $$|E(f(S_n)) - E(f(N(0,1))|$$ £ $$C(b^{1/2} | \log b |$$ $$+\frac{1}{b^{(1/2+d)}}L_{n,d}+b^{-d/2}L_{n,d}^{1/2}+b^{1/2}$$). Put $$b = L_{n,d}^{1/(1+d)}$$ we get Thus, $$d_{W}(L(S_{n}), N(0, 1))$$ £ $CL_{n, d}^{\frac{1}{2(1+d)}} (1+ | \log L_{n, d} |)$ which completes the proof. If the assumption of $V_n = 1$ a.s. is removed, we obtain the following theorem. #### Theorem 2. $$d_{W}(L(S_{n}), N(0, 1))$$ £ $C(2L_{n,d} + N_{n,d})^{\frac{1}{2(1+d)}} (1 + |\log(2L_{n,d} + N_{n,d})|).$ whenever $2L_{n,d} + N_{n,d}$ £ 1. Proof. We define the stopping time t by $$t = \max\{k : \mathop{\mathbf{a}}_{i=1}^{k} s_i^2 \pounds 1\},$$ put $$X_{i}^{0} = X_{i}I(i \pounds t) \text{ for } 1 \pounds i \pounds n$$ and $X_{n+1}^{0} = (1 - \overset{\circ}{\mathbf{a}}_{i}^{1} s_{i}^{2})^{1/2}Y,$ where the random variable Y is independent of F_n with P(Y=1)=P(Y=-1)=1/2. Then, $(X_i^0;1 \pm i \pm n+1)$ is a sequence of martingale differences satisfying the assumptions of Theorem 1, so that $$d_{W}(L(\mathcal{S}_{n}^{6}), N(0,1)) \pounds C_{n,d}^{2(1+d)}(1+|\log \mathcal{L}_{n,d}^{6}|),$$ where $$\mathcal{S}_{n}^{0} = \overset{n+1}{\overset{n+1}{\overset{n}{\circ}}} \mathcal{X}_{i}^{0} \text{ and } \mathcal{L}_{n,d}^{0} = \overset{n+1}{\overset{n+1}{\overset{n}{\circ}}} E(|\mathcal{X}_{i}^{0}|^{2+2d}).$$ But $$\mathcal{L}_{n,d}^{6} = \overset{n+1}{\underset{i=1}{\mathring{a}}} E(|\overset{n}{X}_{i}^{6}|^{2+2d} \pounds L_{n,d} + E(|\overset{n}{X}_{n+1}^{6}|^{2+2d}|)$$ $$\pounds L_{n,d} + E(|1 - \overset{i}{\underset{i=1}{\mathring{a}}} s_{i}^{2}|^{1+d} I(t=n))$$ $$+ E(|1 - \overset{i}{\underset{i=1}{\mathring{a}}} s_{i}^{2}|^{1+d} I(t< n))$$ $$\pounds L_{n,d} + N_{n,d} + E(\max_{1 \pounds i \pounds n} s_{i}^{2+2d})$$ $$\pounds 2L_{n,d} + N_{n,d}.$$ On the other hand, $$\begin{split} E(\mid S_{n} - \stackrel{S_{n}^{0}}{\xi}\mid^{2+2d} \\ & \quad \ \, \pounds \,\, C \stackrel{\mathfrak{A}}{\xi} E(\mid \stackrel{n}{\mathring{\mathbf{A}}}_{i=t+1}^{n} X_{i}\mid^{2+2d}) + E(\mid \stackrel{S_{n+1}^{0}}{\chi}\mid^{2+2d}) \stackrel{\overset{\circ}{\underline{\bullet}}}{\underline{\bullet}} \\ E(\mid \stackrel{S_{n+1}^{0}}{\chi}\mid^{2+2d}) \,\, \pounds \,\, L_{n,d} + N_{n,d}, \end{split}$$ and $$\begin{split} E(|\overset{\circ}{\mathbf{a}}_{i=t+1}^{n}X_{i}|^{2+2d}) \\ & \quad \pounds C \underbrace{\overset{\circ}{\mathbf{E}}}_{i=t+1}^{n}(|\overset{\circ}{\mathbf{a}}_{i}^{2}|^{1+d}) + E(\max_{t+1 \pounds i \pounds n}|X_{i}|^{2+2d}) \frac{\overset{\circ}{\overset{\circ}{\mathbf{E}}}}{\overset{\circ}{\overset{\circ}{\mathbf{E}}}} \\ & \quad \pounds C \underbrace{\overset{\circ}{\mathbf{E}}}_{i=t+1}^{n}(|1-\overset{\circ}{\mathbf{a}}_{i}^{2}|^{1+d}) + E(|1-\overset{\circ}{\mathbf{a}}_{i=1}^{1}s_{i}^{2}|^{1+d}) \frac{\overset{\circ}{\overset{\circ}{\mathbf{E}}}}{\overset{\circ}{\overset{\circ}{\mathbf{E}}}} \\ & \quad + CL_{n,d} \\ & \quad \pounds C \left(2L_{n,d} + N_{n,d}\right) \end{split}$$ which imply that Thus, $$\begin{split} &d_{_{W}}\left(\mathsf{L}(S_{_{n}}),N(0,1)\right)\\ & \pounds\ d_{_{W}}\left(\mathsf{L}(\mathcal{S}_{_{n}}^{6}),N(0,1)\right) + E(\mid S_{_{n}} - \mathcal{S}_{_{n}}^{6}\mid)\\ & \pounds\ d_{_{W}}\left(\mathsf{L}(\mathcal{S}_{_{n}}^{6}),N(0,1)\right) + E(\mid S_{_{n}} - \mathcal{S}_{_{n}}^{6}\mid^{2+2d})^{\frac{1}{2(1+d)}}\\ & \pounds\ C(2L_{_{n,d}} + N_{_{n,d}})^{\frac{1}{2(1+d)}}(1 + \log(2L_{_{n,d}} + N_{_{n,d}})). \end{split}$$ $E(|S_{-} - S_{-}^{0}|^{2+2d} \pounds C(2L_{-} + N_{-}).$ **Corollary.** Let $(X_n; n^3 \ 1)$ be a stationary sequence of martingale difference with respect to the s-fields $F_n = s(X_i : i \pounds n)$. Suppose that $E(|X_1|^{2+2d}) < \Psi$ for any d > 0 and $E(X_1^2 \mid F_0) = E(X_1^2) = s^2 > 0$. Then, there exists a positive constant C depending only on d, we infer for large enough n. $\overset{n}{\mathbf{a}} s_{n,i}^2 = 1,$ fields $(F_n; n^3 1)$. $$L_{n,d} = \mathop{\mathring{\mathbf{a}}}_{i=1}^{n} E \mathop{\mathbf{g}}_{i}^{\mathbf{g}} Y_{i} \Big\|_{\overset{2+2d}{\underline{\mathbf{o}}}}^{\overset{\mathbf{o}}{\underline{\mathbf{c}}}} \mathop{\boldsymbol{\varepsilon}} \frac{E \mathop{\mathbf{g}}_{i}^{\mathbf{g}} X_{1}}{s^{2+2d} n^{d}},$$ and $$S_n = \mathop{\rm a}\limits_{i=1}^n Y_i = \frac{\mathop{\rm a}\limits_{i=1}^n X_i}{s\sqrt{n}}$$. By Theorem 1, we have $$\|F_{S_n} - F\|_{1} \pounds C(L_{n,2d})^{1/(2+2d)} (1+|\ln(L_{n,2d})|)$$ $$\pounds Cn^{-d/(2+2d)} \ln(n).$$ For the next theorem, we establish the convergence rate to zero of $\|F_n - F\|_1$ for sequences of general martingale differences with infinite variances. Suppose that $(X_i; 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \)$ is a sequence of stationary martingale differences with infinite variances. Assume that $h(x) = E(X_1^2 I(|X_1| \ \ \ \ \ \ \ \ \ \ \ \ \))$ is a slowly varying function at infinity. Put $$h_n = \inf\{x^3 \mid 1 : x^{-2}h(x) \notin n^{-1}\},$$ $$\begin{split} \underline{s}_{i}^{2} &= Var(X_{i}I(\mid X_{i}\mid \pounds h_{n})) \\ &- E(X_{i}I(\mid X_{i}\mid \pounds h_{n})\mid F_{i-1})), \\ a_{n}^{2} &= \overset{\circ}{\mathbf{a}}_{i=1}^{n} \underbrace{s}_{i}^{2}, \\ V_{n}^{\circ} &= \frac{1}{a_{n}^{2}} \overset{\circ}{\mathbf{a}}_{i}^{n} \underbrace{\left\{E(((X_{i}I(\mid X_{i}\mid \pounds h_{n})) - E(X_{i}I(\mid X_{i}\mid \pounds h_{n})\mid F_{i-1}))^{2} \mid F_{i-1})\right\}.} \\ K_{n,d} &= 2^{2+2d} \underbrace{\overset{\circ}{\mathbf{a}}_{n}^{n} \overset{\circ}{\underline{o}}_{i}^{2+2d}}_{\mathbf{a}_{n} \overset{\circ}{\underline{o}}_{n}^{2}} \underbrace{\frac{E(\mid X_{1}\mid^{2+2d}I(\mid X_{1}\mid \pounds h_{n}))}{h_{n}^{2d}h(h_{n})}, \\ Q_{n} &= \frac{h_{n}^{2}E(\mid X_{1}\mid I(\mid X_{1}\mid \triangleright h_{n}))}{a_{n}h(h_{n})}, \end{split}$$ and $$M_{n,d} = E \left\| V_n^{\mathcal{A}} - 1 \right\|^{1+d}$$. **Theorem 3.** Suppose that $(X_i; 1 \ \ \ \ \ \ i \ \ \ \ \)$ is a sequence of stationary martingale differences such that $h(x) = E(X_1^2 I(|X_1| \ \ \ \ \ \ \ \ \ \ \ \ \))$ is a slowly varying function at infinity. Then whenever $2K_{n,d} + M_{n,d}$ £ 1. Proof. Set $$X_{i}^{0} = a_{n}^{-1}[X_{i}I(|X_{i}| \pounds h_{n}) - E(X_{i}I(|X_{i}| \pounds h_{n}| F_{i-1})],$$ $$S_n^0 = \overset{\circ}{a} X_i^0$$. Then, $$d_{W}(L(S_{n} / a_{n}), N(0,1)) \pounds d_{W}(L(S_{n}^{6}), N(0,1)) + \frac{nE(|X_{1}| I(|X_{1}| > h_{n}))}{a_{n}}.$$ (0.2) $$\begin{split} &d_{W}\left(\mathsf{L}(\mathcal{S}_{n}^{6}),N(0,1)\right) \\ & \quad \pounds \ C(2\mathcal{L}_{n,d}^{6} + \mathcal{N}_{n,d}^{6})^{\frac{1}{2(1+d)}}(1 + \mid \log(2\mathcal{L}_{n,d}^{6} + \mathcal{N}_{n,d}^{6} \mid), \end{split}$$ where $$\hat{\mathcal{E}}_{n,d}^{6} = \underset{i=1}{\overset{n}{\mathbf{a}}} E(|\hat{X}_{i}^{6}|^{2+2d})$$ $$£ 2^{2+2d} \frac{nE(|X_{1}|^{2+2d} I(|X_{1}| \pounds h_{n}))}{a_{n}^{2+2d}}$$ $$£ 2^{2+2d} \frac{h_{n}^{2} E(|X_{1}|^{2+2d} I(|X_{1}| \pounds h_{n}))}{a_{n}^{2+2d} h(h_{n})}$$ and where $$N_{n,d}^{0} = E(|V_{n}^{0} - 1|^{1+d}) = M_{n,d}$$ Thus, $$\begin{split} & d_{W}\left(\mathbb{L}(\hat{S}_{n}^{6}), N(0, 1)\right) \\ & \text{£ } C(2K_{n, d} + M_{n, d})^{\frac{1}{2(1 + d)}} (1 + |\log(2K_{n, d} + M_{n, d})|) \end{split}$$ On the other hand $$\frac{nE(|X_{1}| I(|X_{1}| > h_{n}))}{a_{n}}$$ $$\pounds \frac{h_{n}^{2}E(|X_{1}| I(|X_{1}| > h_{n}))}{a_{n}h(h_{n})} = Q_{n}.$$ (0.4) Combining (1.2), (1.3) and (1.4) yield the conclusion of Theorem 3. #### 3. Conclusion Through this article, we have obtained some results of the convergence rate in the mean central limit theorems for sequences of general martingale differences with finite or infinite variances. #### Acknowledgement We would like to thank the anonymous referee for helpful comments, which have further improved our results. This research is funded by the Fund for Science and Technology Development of the University of Danang under project number B2019-DN03-33. #### References - [1] Agnew, R. P. (1954). Global versions of the central limit theorem, Proc. *Nat. Acad. Sci.* U.S.A., 1, 800-804. - [2] Bolthausen, E. (1982). Exact convergence rates in some martingale central limit theorems. *The Annals of Probability*, 10(3), 672-688. - [3] Dudley, R.M. (2004). *Real analysis and probability*. Cambridge University Press. - [4] Dung, L.V., Son, T. C. and Tien, N. D. (2014). L1 bounds for some martingale central limit theorems. *Lithuanian Mathematical Journal*, 54(1), 48-60. - [5] Dung L.V and Son T.C. (2019). On the rate of convergence in the central limit theorem for arrays of random vectors. *Statistics & Probability Letters*. - [6] El Machkouri, M., & Ouchti, L. (2007). Exact convergence rates in the central limit theorem for a class of martingales. *Bernoulli*, 13, 981-999. - [7] Haeusler, E. (1984). A note on the rate of convergence in the martingale central limit theorem. *The Annals of Probability*, 12, 635-639. - [8] Haeusler, E. (1988). On the rate of convergence in the central limit theorem for martingales with discrete and continuous time. *The Annals of Probability*, 16(1), 275-299. - [9] Mourrat, J. C. (2013). On the rate of convergence in the martingale central limit theorem. *Bernoulli*, 19, 633-645. - [10] Röllin, A. (2018). On quantitative bounds in the mean martingale central limit theorem. *Statistics & Probability Letters*, 38, 171-176. ## VỀ TỐC ĐỘ HỘI TỰ TRONG MỘT SỐ ĐỊNH LÍ GIỚI HẠN TRUNG TÂM THEO TRUNG BÌNH **Tóm tắt:** Cho $(X_k; 1 \le k \le n)$ là dãy hiệu martingale tương thích với dãy σ - đại số $F_0 \subset F_1 \subset ... \subset F_n$, trong đó phương sai của biến ngẫu nhiên X_k có thể hữu hạn hoặc vô hạn. Mục đích của bài báo này là thiết lập tốc độ hội tụ trong định lí giới hạn trung tâm theo trung bình cho tổng $S_n = X_1 + ... + X_n$ bằng phương pháp của Bolthausen [2], Haeusler [8] kết hợp với kết quả của Röllin [10]. Từ khóa: phương sai vô hạn; định lí giới hạn trung tâm; tốc độ hội tụ; biến ngẫu nhiên; hiệu martingale.