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Abstract: Let (Xy;1<k<n) be a sequence of martingale differences with respect to o -fields

FocFyc..cFy, where the variance of X, may be finite or infinite. The aim of this article is to
establish the rate of convergence in the mean central limit theorems for the sum S, =Xj +...+ Xy, by
uniting the method of Bolthausen [2], Haeusler [8] and the result of Réllin [10].
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1. Introduction

Let (X ;1£k£n) be a sequence of square
integrable martingale difference with respect to s -
fields F,)I F T .1 F_, thatis, suppose that X, is
measurable with respect to F,_, with E(sz) <¥ and
E(X, |F,_,)=10forall 1£ k £ n. Denote F_and F
be distribution functions of S = X, +..+ X  and
standard normal N (0,1), respectively. Assume that

E(|X, ) <¥ foralli* 1,according to Theorem 3.2

of Agnew [1], “the conditional Linderberg condition"”
n
a4 EXA(X, Pe)|F. )%%®0asn® ¥
i=1

for each e> 0 and “the conditional
condition”

normalizing
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n
4 EX?IF )% %®lasn® ¥,
i=1

together imply the mean central limit theorem

F - F"l: O F.(x)- Fx)|dx® Oasn ® ¥ .

Obviously, “the conditional Linderberg condition”
is satisfied if for some d> 0, “the Liapounov condition
of order 2+ 2d”

4 E(X, )% %®0asn ® ¥ holds.
i=1

The rate of convergence in the central limit theorem
was studied by many authors. In 1982, Bolthausen [2]
established the rate of convergence in central limit
theorems for bounded martingale difference sequences

in the Kolmogorov metric (d, ). Then, Mourrat [9]

generalized this result. Haeusle [7, 8], EI Machkouri and
Ouchti [6] extended the results of Bolthausen [2] to
unbounded martingale difference sequences.

The rate at which ||Fn - F||1 converges to zero has

studied by Dung et. al. [4], Réllin [10] and other authors
under the assumption of bounded third order moments.
Dung and Son [4] established the rate of convergence in
the central limit theorem for arrays of martingale
difference random vectors in the bounded Lipschitz
metric. In this article, we unite the method of
Bolthausen [2], Haeusler [8] and the result of R&llin
[10] to establish the convergence rate to zero of

||Fn - F"l for general martingale differences sequences

under “the Liapounov condition of order 2+ 2d”
assumption for some d> 0. The convergence rate to
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zero of ||Fn - F||1 for sequences of general martingale

differences with infinite variances is also studied.

2.Results

The Wasserstein distance between two distributions
F and G on real line is defined as

dy (F.G) = sup[E(F(X))- E(f(" )],

where L is the set of 1-Lipschitzian functions from
i to ,ie.
L={f:i ®j ]f()- f)EIx-yl}

According to the Kantorovich-Rubinstein theorem
(see, e.g., [3], Theorem 11.8.2) we have that

d, (F,G) = |||: - G||1.

It is not difficult to see that for any random variable X,

A, (F, . F) € —2 [ (F.F).

@2p)”*

Let (X,;1£k£n) be a sequence of square

integrable martingale difference with respect to s -
fields F, T F T .1 F .

Without loss of generality we may assume that
s, = EX))+ ..+ E(X?)=1. For 1£k£n, we
define
n
si=EMX/|F,_,), Vi=§ s’

i
i=1

n
2 — 2 2 _ 28 2
r.,=VvV,-VvV.,=a s;,

k+1
i=k+1

where § s’ isdefined to be zero if k + 1> n . Set
i=k+1

For x> 0 we denote log(x) = max{lIn(x)},

where In(x) is the natural logarithm function.

Theorem 1. Assume thatV_ = 1 a.s. Then

1

d, (L(S,),N(0,1) £ CLX* 91+ | logL, , )

whenever Ln,d £ 1

Proof.
For fixed O< b £ 1, set

Xg= X (X, [£ b¥2/2)
- EXI(X, € Y21 2)|F_ ),

S¢= § X¢.

i=1

For any function f i L., we have

|E(F(S,))- E(f(N(0,1)))]
£IE(fSH) - E(F(NOD))|

+ & E(X, 10X, b b"2/ 2),
i=1

It is obvious that

4 E(X, [1(X, P b¥?12)£ _C
i=1

b(1/2+d) n.d*
Then
[E(F(S,))- E(FN@D)) I
[E(FS9)- EFNOD) [+ L

b(]J2+d) nd"

Let Xg,, X¢g,,.. be independent random

variables with

P(Xg¢=-Db")=P(Xg¢=Db"")=1/2

for all i® n+ 1 which are independent of F . For

L.a=4a E(X, ),

i=1

N, = Ef7- 1 K
' t=max{k:q s/X§£ 1}

for some d> 0. i=1

eachi? n+1,set F, =s(F ,X¢, ., X4.Itisclear

that the random variable
1+dQ
g

Put Sn = X1+ X2+ ot Xn.
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is a stopping time with respect to (F;i® 1) and
ne£tE£n+[b '], where [b"'] denotes the integer

partof b"*.Fori=1..k=n+[b ']+ 1,set

Z = X#(i£t)

=

2
t

X
g g a s.ZX_
i=1

'| L

= X g(i=t+ ).

Thus, (Z,;1£ 1 £ k) is a sequence of martingale

differences adapted to the filtration F_,...,F, . Writing
from now on
s¢=sXZ) Sg=Z +..+Z.

We have that
k
a siqz? =1 [Z [t bY2 fori=1,...,Kk,
i=1

and

MZ

E(ISg- S#) £ Cga E(lZ, I)—

=n+1
-di2p v
£Cb ané.
Therefore,

E(f(S,)- E(F(N(QD))]
£] E(f(SK@)- E(FINOD) [ (0.1)

a2 U2
C(b(112+d) b, )

Put
i k
ViE=3§ sgrég=1-Vi£ =3 s¢
j=1 j=i
Now define the sequence of stopping times
t,=0
t,=sup{m? 0:V £ jb}for1£ j£ [b™'],

t .=
[b™*}1
For t,, < i £ t,, we have

ré=1-VE> 1- jb.

Thus, it follows from Theorem 2.1 of Réllin [10]
with a = (2b)"? that

[E(f(S)- E(F(N(OD))]
k & 3
é | _+ 2\/_b1/2
=1 ¢+ 2
b iRl P |Z |3 Q
=334 3§ EHE
j=1 |:tJ_1+1 ri¢2 + Zbﬁ
+ 2/2b"?
b 1 hY?2 y )
£33 3 E(Z
ja:1 1' jb+2b|—31+1 (l Il)
+ 24/2b"?2
b ip1 hY2 x , g
=33 — Eé E(1Z, PIF,. )%
=1 1- jb+2b B Y3
2b1/2
[b’1]+1 b1/2
=3 a —F tf- th )
j=1 1' Jb 2b J i-1
+ 2’\/§b1/2
b i1 3/2
£38 2o
j:1 1' Jb + 2b
[b'1]+11
£6bY% § 2bY?
j=1

£ C(b¥2 | logh | +2v2bY2.
b ir1 b3/2

£33 ————+22b"?
j:1 1' Jb + 2b

Combining this with (1.1) we obtain

[E(f(S,))- E(f(N(0,D)]
£ C(b¥? | logb |
1

+ b(ﬂ2+d) L + b d/ZL1/2 + bl/2)

_ | V(+d)
Put b =L "% we get
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[E(f(S,))- E(f(N(0,D)|
£ CLE9(1+ | logL, , |).

Thus,

1

d, (L(S,),N(0,1)) £ CLZO(1+ | logL, , |)

which completes the proof.
If the assumption of V=1 as. is removed, we

obtain the following theorem.
Theorem 2.

d, (L(S,).N(0.1))

£C@L N, )™+ [logL, ,+ N, ).

whenever 2Ln,d + Nn,d £ 1

Proof.
We define the stopping time t by
k
t=max{k:g3 s’ £ 1},
i=1
put
o= X 1G(et)for1£i&n
t
and X0 = (1- § s?)'%,
i=1
where the random variable Y is independent of F_— with
P(Y =2)=P(Y =-1)=1/2.Then, (¥1£i£n+1)

is a sequence of martingale differences satisfying the
assumptions of Theorem 1, so that

d, (L&), N(0,D) £ CB29(1+ | logi®, ),

where

n+1 n+1
=38 Xoand 0 =3 E(ROP™.

i=1 i=1

But

18

n+1
0, o + +
% = a E(ROP e L+ E(R, )

n,d n+1
i=1

t
£L,+E(L- 4 s 1(t =n))
i=1
t

+E(1- § SNt <n))

i=1
£ Ln,d + Nn,d + E(maxlﬁiin Si2+2d)
£2L ,+N_

y
On the other hand,
E(l Sn _ gr? |2+2d

x n ]
ECEE( A X ™)+ BUX, )3
i=t+1 ]

E(| X0

n+1l

|2+2d) £ Ln’d + Nny

d!
and

E(d X, ™)

i=t+1

x n 0
£CfE( A STF Emax, ., IX, Fo)

i=t+1 %}

>

& o d <:>I dQ
£CEE(L- § sZFH+E(1- § sZ[*)=
]

I
i=1 i=1

+CL

nd
gc(a,,+N, )

which imply that
E(IS, - 6™ C(aL, ,+N, ).
Thus,

d, (L(S,).N(0,1))
£d, (LEO.NOD)+ E(S, - $1)
£d, (L), N0D)+E(S, - $bpra)xso

£C@L,,+ Nn'd)z(“d’(1+ log(2L, , + N, ).

Corollary. Let (X ;n* 1) be a stationary

sequence of martingale difference with respect to the
F,=s(X, :i£n).

s -fields Suppose that

E(IX, )< ¥ for  any d>0 and
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E(X?|F,)= E(X?)=s?> 0. Then, there exists a
positive constant C depending only on d, we infer

F - F|| £Cn @2 n(n)

X

S\F 1

for large enough n .

Qo5
-

w
-

Proof. Set Y =

n,i

X, for 1£i£ n, then

By

sE=E(YZ|F, )=

martingale difference sequence with respect to the s -
fields (F ;n > 1).

. We see that (Y ;n* 1) isa

DIH

n
o 2 _
a Sn,i - 1’
i=1
2+2d0
n ZZdO @X g
_ o
Lnd* Egh' 2+2d d !

X,
=3Y =

S J’

By Theorem 1, we have

- F] £ PP In, ) )

£ Cn Y2 Inn).

||' Qo

and S

Sn

For the next theorem, we establish the convergence
rate to zero of ||Fn - F||1 for sequences of general
martingale differences with infinite variances. Suppose
that (X,;1£1i£n)
martingale differences with infinite variances. Assume
that h(x) = E(X2I(| X, |£ X))
function at infinity. Put

h =inf{x* 1:x *h(x) £ n"'},

n

is a sequence of stationary

is a slowly varying

=Var(X I(| X, |¢ h)
- EQGHUX I h)TF)),
s?,

QD
BN
1
" Qo

n

v = %é_ W10, 1€ )
SEXAX, e h) TR )Y TR )}

mm 8 E(X, P, h))
K = 22+2d ni 1 1 n
n.d Ea:é: hn2dh(hn)

_ MEX, [H(IX, P h))
" a h(h )

and

_ E‘V@ l+d

Noting that if h = O(a ) then we get K , ® 0

and Q ® 0 as n® ¥ .

theorem.

We have the following

Theorem 3. Suppose that (X,;1£1i£n) is a
sequence of stationary martingale differences such that
h(x) = E(Xfl (I X, [£ x)) is a slowly varying function
at infinity. Then

d, (LS, /a),N(0,1)
5

x 1
£C E(ZK”"’ M, I [ log(2K ,, + M, ) E
%]

+Q,.

whenever 2Kn’d + Mn’d £ 1

Proof.
Set

)2/?: a ‘X I(X, € h)- ECXI(X, |€h |F DI,

9 = 4 X0 . Then,
d, (LS, / a,).N(OD) £ d, (LED.N(OD)
N nE(IX,[1(X, > h) (02)
" .

n
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d, (L(8%),N(0,2)
1
0 2(1+d) 9
£c® + N )91+ |log2®, + N ),
where

n
0, _ 9 2+2d
to, =4 E(RE[)

i=1

nE(IX, " I(X, € h))

2+ 2d
£2 a§+2d
£ g2t han(l Xl |2+2d I(l Xl |£ hn))
a, *heh,)
= Kn,d’
and where
1+d
e = E(‘an‘é- 1“ )=M,,
Thus,
d, (L(9),N(0,2))
1
£C2K, ,+ M )+ log2K, ,+ M, )])

On the other hand
nE( X, [1(X, > h))
an
MEIX, 11X, P> h)) _
a h(h)
Combining (1.2),
conclusion of Theorem 3.

(0.4)

Q.

(2.3) and (1.4) vyield the

3.Conclusion

Through this article, we have obtained some results
of the convergence rate in the mean central limit
theorems for sequences of general martingale
differences with finite or infinite variances.
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VE TOC PQ HQI TU TRONG MOQT SO PINH Li GIOI HAN TRUNG TAM THEO TRUNG BINH

Tém tat: Cho (Xy;1<k<n) la ddy hiéu martingale twong thich véi ddy o - dai s6 FgcF{c..cF,, trong dé phwong sai cla

bién ng&u nhién X, c6 thé hitu han hodc v6 han. Muc dich clia bai bao nay 1a thiét 1ap tc d6 hoi tu trong dinh Ii gi¢i han trung tam

theo trung binh cho téng S, = X1 +...+ X,, bng phuong phép clia Bolthausen [2], Haeusler [8] két hop véi két qua clia Réllin [10].

T khéa: phwong sai vo han; dinh Ii gi¢i han trung tam,; tbc do hoi tu; bién ngAu nhién; hiéu martingale.
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