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ON THE RATE OF CONVERGENCE IN SOME MEAN MARTINGALE CENTRAL 

LIMIT THEOREMS 

Le Van Dunga*, Ton That Tua 

Abstract: Let ( ;1 )kX k n   be a sequence of martingale differences with respect to  -fields 

0 1 ... n  F F F , where the variance of kX  may be finite or infinite. The aim of this article is to 

establish the rate of convergence in the mean central limit theorems for the sum 1 ...n nS X X= + + by 

uniting the method of Bolthausen [2], Haeusler [8] and the result of Röllin [10].  
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1. Introduction  

Let ( ;1 )
k

X k n£ £  be a sequence of square 

integrable martingale difference with respect to s -

fields 
0 1

...
n

Ì Ì ÌF F F , that is, suppose that 
k

X  is 

measurable with respect to 
1k -

F  with 
2( )
k

E X < ¥  and 

1
( | ) 0

k k
E X

-
=F  for all 1 .k n£ £  Denote 

n
F  and F  

be distribution functions of 
1

...
n n

S X X= + +  and 

standard normal (0,1)N , respectively. Assume that 

2(| | )
i

E X < ¥  for all 1i ³ , according to Theorem 3.2 

of Agnew [1], “the conditional Linderberg condition'” 

2

1
1

( (| | ) | ) 0 as  
n

P

i i i
i

E X I X ne
-

=

> ¾ ¾® ® ¥å F  

for each 0e >  and “the conditional normalizing 

condition” 

2

1
1

( | ) 1 as ,
n

P

i i
i

E X n
-

=

¾ ¾® ® ¥å F  

together imply the mean central limit theorem 

1
| ( ) ( ) | 0 as .

n n
F F x x dx n- F = - F ® ® ¥ò

¡
 

Obviously, “the conditional Linderberg condition” 

is satisfied if for some 0d > , “the Liapounov condition 

of order 2 2d+ ” 

2 2

1

(| | ) 0 as  holds.
n

i
i

E X nd+

=

¾ ¾® ® ¥å  

The rate of convergence in the central limit theorem 

was studied by many authors. In 1982, Bolthausen [2] 

established the rate of convergence in central limit 

theorems for bounded martingale difference sequences 

in the Kolmogorov metric (
K

d ). Then, Mourrat [9] 

generalized this result. Haeusle [7, 8], El Machkouri and 

Ouchti [6] extended the results of Bolthausen [2] to 

unbounded martingale difference sequences. 

The rate at which 
1n

F - F  converges to zero has 

studied by Dung et. al. [4], Röllin [10] and other authors 

under the assumption of bounded third order moments. 

Dung and Son [4] established the rate of convergence in 

the central limit theorem for arrays of martingale 

difference random vectors in the bounded Lipschitz 

metric. In this article, we unite the method of 

Bolthausen [2], Haeusler [8] and the result of Röllin 

[10] to establish the convergence rate to zero of 

1n
F - F  for general martingale differences sequences 

under “the Liapounov condition of order 2 2d+ ” 

assumption for some 0d > . The convergence rate to 
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zero of 
1n

F - F  for sequences of general martingale 

differences with infinite variances is also studied.  

2. Results 

The Wasserstein distance between two distributions 

F  and G  on real line is defined as 

1

( , ) sup | ( ( )) ( ( )) |,
W

f

d F G E f X E f Y
Î L

= -  

where 
1

L  is the set of 1 -Lipschitzian functions from 

¡  to ¡ , i.e.  

1
{ : :| ( ) ( ) | | |}.f f x f y x y= ® - £ -L ¡ ¡  

According to the Kantorovich-Rubinstein theorem 

(see, e.g., [3], Theorem 11.8.2) we have that 

1
( , ) .

W
d F G F G= -  

It is not difficult to see that for any random variable ,X  

1/ 4

2
( , ) ( , ).

(2 )
XK X W

d F d F
p

F £ F  

Let ( ;1 )
k

X k n£ £  be a sequence of square 

integrable martingale difference with respect to s -

fields 
0 1

...
n

Ì Ì ÌF F F . 

Without loss of generality we may assume that 
2 2

1
( ) ... ( ) 1

n n
s E X E X= + + = . For 1 k n£ £ , we 

define 

2 2 2 2

1
1

( | ), ,
n

k k k n i
i

E X Vs s
-

=

= = åF  

2 2 2 2

1
1

,
n

k n k i
i k

V Vr s
+

= +

= - = å  

where 2

1

n

i
i k

s
= +

å  is defined to be zero if 1k n+ > . Set 

2 2

,
1

(| | ),
n

n i
i

L E X d

d

+

=

= å  

1
2

,
1 ,

n n
N E V

d

d

+æ ö÷ç= - ÷ç ÷çè ø
 

for some 0d > . 

Put 
1 2

... .
n n

S X X X= + + +   

For 0x >  we denote log( ) max{1, ln( )}x x= , 

where ln( )x  is the natural logarithm function. 

Theorem 1. Assume that 1
n

V =  a.s. Then 

1

2(1 )

, ,
( ( ), (0,1)) (1 | log |)

W n n n
d S N CL Ld

d d

+£ +L  

whenever 
,

1.
n

L
d
£   

Proof. 

For fixed 0 1b< £ , set  

1/ 2

1/ 2

1

(| | / 2)

                     ( (| | / 2) | ),

i i i

i i i

X X I X

E X I X

b

b
-

¢= £

- £ F

1

n

n i
i

S X
=

¢ ¢= å . 

For any function 
1

f Î L , we have 

1/ 2

1

| ( ( )) ( ( (0,1))) |

              | ( ( )) ( ( (0,1))) |

                (| | (| | / 2)).

n

n

n

i i
i

E f S E f N

E f S E f N

E X I X b
=

-

¢£ -

+ >å

 

It is obvious that 

1/ 2

,(1/ 2 )
1

(| | (| | / 2)) .
n

i i n
i

C
E X I X L

dd
b

b +
=

> £å   

Then 

,(1/ 2 )

| ( ( )) ( ( (0,1))) |

| ( ( )) ( ( (0,1))) | .

n

n n

E f S E f N

C
E f S E f N L

ddb +

- £

¢ - +
  

Let 
1n

X
+
¢ , 

2n
X

+
¢ ,... be independent random 

variables with 

1/ 2 1/ 2( ) ( ) 1 / 2
i i

P X P Xb b¢ ¢= - = = =  

for all  1,i n³ +  which are independent of .
n

F  For 

each 1i n³ + , set 
1

( , , ..., )
i n n i

X Xs
+
¢ ¢=F F . It is clear 

that the random variable 

2

1

max{ : ( ) 1}
k

i i
i

k Xt s
=

¢= £å  
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is a stopping time with respect to ( ; 1)
i

i ³F  and 

1[ ]n nt b -£ £ + , where 1[ ]b -  denotes the integer 

part of 1b - . For 11,..., [ ] 1i nk b -= = + + , set 

1/ 2

1 2

1

( )

   1 ( ) ( 1).

i i

i i i
i

Z X I i

X X I i
t

t

b s t-

=

¢= £

æ öæ ö÷ç ÷ç ÷¢÷ ¢ç+ - = +ç ÷÷ç ç ÷÷ç ÷ç è øè ø
å

  

Thus, ( ;1 )
i

Z i k£ £  is a sequence of martingale 

differences adapted to the filtration 
0

F ,...,
k

F . Writing 

from now on 

2 2

1
( ), ... .

i i i
Z S Z Z

k k
s s¢ ¢¢= = + +  

We have that 

2 1/ 2

1

1, | |  for 1, ..., ,
i i

i

Z i
k

s b k
=

¢ = £ =å  

and 

1/ 2

2

1

(| |) (| | )
n i

i n

E S S C E Z
k

k
= +

æ ö÷ç¢ ¢¢ ÷- £ ç ÷ç ÷çè ø
å   

 / 2 1/ 2

,
.

n
C Ld

d
b -£   

Therefore, 

 

/ 2 1/ 2

, ,(1/ 2 )

| ( ( )) ( ( (0,1))) |

           | ( ( )) ( ( (0,1))) |

1
             ( ).

n

n n

E f S E f N

E f S E f N

C L L

k

d

d dd
b

b

-

+

-

¢¢£ -

+ +

 (0.1) 

Put 

2 2 2 2 2

1
1

, 1 .
i

i j i i j
j j i

V V
k

s r s
-

= =

¢ ¢ ¢ ¢ ¢= = - =å å   

Now define the sequence of stopping times 

0
0,t =  

2 1sup{ 0 : } for 1 [ ],
j m

m V j jt b b -¢= ³ £ £ £   

1[ ] 1
.

b
t k

- +
=   

For 
1j j

it t
-
< £ , we have 

2 2

1
1 1 .

i i
V jr b

-
¢ ¢= - ³ -  

Thus, it follows from Theorem 2.1 of Röllin [10] 

with 1/ 2(2 )a b=  that 

| ( ( )) ( ( (0,1))) |E f S E f N
k
¢¢ -   

3

1/ 2

2
1

| |
3 2 2

2

i

i i

Z
E

k

b
r b=

æ ö÷ç ÷ç£ +÷ç ÷ç ¢ ÷ç +è ø
å   

1

1

3[ ] 1

2
1 1

1/ 2

| |
3

2

                                   2 2

j

j

i

j i i

Z
E

tb

t r b

b

-

-

+

= = +

æ ö÷ç ÷ç= ÷ç ÷ç ¢ ÷ç +è ø

+

å å   

1

1

[ ] 1 1/ 2
2

1 1

1/ 2

3 (| | )
1 2

                                     2 2

j

j

i
j i

E Z
j

tb

t

b

b b

b

-

-

+

= = +

£
- +

+

å å
  

1

1

[ ] 1 1/ 2
2

1
1 1

1/ 2

3 (| | | )
1 2

                                     2 2

j

j

i i
j i

E E Z
j

tb

t

b

b b

b

-

-

+

-
= = +

æ ö÷ç ÷ç= ÷ç ÷ç ÷- + ÷çè ø

+

å å F
  

( )
1

1

[ ] 1 1/ 2
2 2

1

1/ 2

3
1 2

                                    2 2

j j
j

E V V
j

b

t t

b

b b

b

-

-

+

=

¢ ¢= -
- +

+

å   

1[ ] 1 3/ 2
1/ 2

1

2
3 2 2

1 2j j

b
b

b
b b

- +

=

£ +
- +

å  

1[ ] 1

1/ 2 1/ 2

1

1
6 2 2

j j

b

b b

- +

=

£ +å  

1/ 2 1/ 2( | log | 2 2 .C b b b£ +   

1[ ] 1 3/ 2
1/ 2

1

2
3 2 2

1 2j j

b
b

b
b b

- +

=

£ +
- +

å   

Combining this with (1.1) we obtain 

| ( ( )) ( ( (0,1)) |
n

E f S E f N-  

 1/ 2( | log |C b b£   

/ 2 1/ 2 1/ 2

, ,(1/ 2 )

1
).

n n
L Ld

d dd
b b

b

-

+
+ + +   

Put 1/ (1 )

,n
L d

d
b +=  we get 
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1

2(1 )

, ,

| ( ( )) ( ( (0,1)) |

                        (1 | log |).

n

n n

E f S E f N

CL Ld

d d

+

-

£ +

  

Thus, 

1

2(1 )

, ,
( ( ), (0,1)) (1 | log |)

W n n n
d S N CL Ld

d d

+£ +L   

which completes the proof. 

If the assumption of 1
n

V =  a.s. is removed, we 

obtain the following theorem. 

Theorem 2. 

1

2(1 )

, , , ,

( ( ), (0,1))

(2 ) (1 | log(2 |)) .

W n

n n n n

d S N

C L N L Nd

d d d d

+£ + + +

L

  

whenever 
, ,

2 1.
n n

L N
d d

£+   

Proof. 

We define the stopping time t  by 

2

1

max{ : 1},
k

i
i

kt s
=

= £å  

put 

2 1/ 2

1
1

( ) for 1  

and (1 ) ,

i i

n i
i

X X I i i n

X Y
t

t

s
+

=

= £ £ £

= - å

%

%
 

where the random variable Y  is independent of 
n

F  with 

( 1) ( 1) 1 / 2P Y P Y= = = - = . Then, ( ;1 1)
i

X i n£ £ +%  

is a sequence of martingale differences satisfying the 

assumptions of Theorem 1, so that 

1/ 2(1 )

, ,
( ( ), (0,1)) (1 | log |),

W n n n
d S N CL Ld

d d

+£ +% % %L  

where  

1

1

n

n i
i

S X
+

=

= å% %  and 
1

2 2

,
1

.(| |
n

n i
i

L E X d

d

+
+

=

= å% %  

But 

1
2 2 2 2

, , 1
1

2 1

,
1

2 1

1
2 2

, , 1

, ,

(| | (| | |)

(| 1 | ( ))

(| 1 | ( ))

(max )

2 .

n

n i n n
i

n i
i

i
i

n n i n i

n n

L E X L E X

L E I n

E I n

L N E

L N

d d

d d

t
d

d

t
d

d

d d

d d

s t

s t

s

+
+ +

+
=

+

=

+

=
+

£ £

= £ +

£ + - =

+ - <

£ + +

£ +

å

å

å

% % %

  

On the other hand, 

2 2

2 2 2 2

1
1

(| |

      (| | ) (| | ) ,

n n

n

i n
i

E S S

C E X E X

d

d d

t

+

+ +

+
= +

-

æ ö÷ç ÷£ +ç ÷ç ÷çè ø
å

%

%
  

2 2

1 , ,
(| | ) ,

n n n
E X L Nd

d d

+

+
£ +%   

and 

2 2

1

(| | )
n

i
i

E X d

t

+

= +

å   

2 1 2 2

1
1

(| | ) (max | | )
n

i i n i
i

C E E Xd d

t
t

s + +

+ £ £
= +

æ ö÷ç ÷£ +ç ÷ç ÷çè ø
å  

2 1 2 1

1 1

(| 1 | ) (| 1 | )
n

i i
i i

C E E
t

d ds s+ +

= =

æ ö÷ç ÷£ - + -ç ÷ç ÷çè ø
å å   

,n
CL

d
+   

( ), ,
2

n n
C L N

d d
£ +   

which imply that 

2 2

, ,
(| | (2 ).

n n n n
E S S C L Nd

d d

+- £ +%   

Thus, 

1

2 2 2(1 )

1

2(1 )

, , , ,

( ( ), (0,1))

( ( ), (0,1)) (| |)

( ( ), (0,1)) (| | )

(2 ) (1 log(2 )).

W n

W n n n

W n n n

n n n n

d S N

d S N E S S

d S N E S S

C L N L N

d d

d

d d d d

+ +

+

£ + -

£ + -

£ + + +

% %

% %

L

L

L
  

Corollary. Let ( ; 1)
n

X n ³  be a stationary 

sequence of martingale difference with respect to the 

s -fields ( : )
n i

X i ns= £F . Suppose that 

2 2

1
(| | )E X d+ < ¥  for any 0d >  and 
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0

2 2 2

1 1
( ) 0| ( )E X E X s= = >F . Then, there exists a 

positive constant C  depending only on d , we infer 

1

/ (2 2 )

1

. ln( )
n

i

i

X

n

F C n nd d

s

=

- +- F £
å

 

for large enough n . 

Proof. Set 
1

,n i i
Y X

n

s -

=  for 1 i n£ £ , then 

2 2

1

1
( | )

n n n
E Y

n
s

-
= =F . We see that ( ; 1)

n
Y n ³  is a 

martingale difference sequence with respect to the s -

fields ( ; 1)
n

n ³F . 

2

,
1

1,
n i

i

n

s
=

=å  

2 2

2 2 1

, 2 2
1

,
n

n i
i

E X

L E Y
n

d

d

d d ds

+

+

+
=

æ ö÷ç ÷ç ÷çæ ö è ø÷ç= £÷ç ÷çè ø
å   

and 
1

1

.

n

in
i

n i
i

X

S Y
ns

=

=

= =

å
å  

By Theorem 1, we have 

1/ (2 2 )

,2 ,2
1

/ (2 2 )

( ) (1 | ln( ) |)

               ln( ).

n
S n n

F C L L

Cn n

d

d d

d d

+

- +

- F £ +

£
 

For the next theorem, we establish the convergence 

rate to zero of 
1n

F - F  for sequences of general 

martingale differences with infinite variances. Suppose 

that ( ;1 )
i

X i n£ £  is a sequence of stationary 

martingale differences with infinite variances. Assume 

that 
2

1 1
( ) ( (| | ))h x E X I X x= £  is a slowly varying 

function at infinity. Put 

2 1inf{ 1 : ( ) },
n

x x h x nh - -= ³ £   

2

1

2 2

1

( (| | )

                      ( (| | | )),)

,

i i i n

i i n i

n

n i
i

Var X I X

E X I X

a

s h

h

s

-

=

= £

- £

= å

F   

{

}

2

2
1

2

1 1

1
((( (| | )

            ( (| | ) | )) | ) .

n

n i i n
jn

i i n i i

V E X I X
a

E X I X

h

h

=

- -

= £

- £

å%

F F

  

2 2
2 2

2 2 1 1

, 2

(| | (| | ))
2 ,

( )

n n

n

n n n

E X I X
K

a h

d
d

d

d d

h h

h h

+
+

+
æ ö £÷ç ÷ç= ÷ç ÷ç ÷è ø

  

2

1 1
(| | (| | ))

,
( )

n n

n

n n

E X I X
Q

a h

h h

h

>
=   

and 

1
2

,
1 .

n n
M E V

d

d

+

= -%   

Noting that if ( )
n n

O ah =  then we get 
,

0
n

K
d
®  

and 0
n

Q ®  as n ® ¥ . We have the following 

theorem. 

Theorem 3. Suppose that ( ;1 )
i

X i n£ £  is a 

sequence of stationary martingale differences such that 
2

1 1
( ) ( (| | ))h x E X I X x= £  is a slowly varying function 

at infinity. Then 

1

2(1 )

, , , ,

( ( / ), (0,1))

(2 ) (1 | log(2 ) |)

    .

W n n

n n n n

n

d S a N

C K M K M

Q

d

d d d d

+

æ ö÷ç ÷ç£ + + + ÷ç ÷ç ÷÷çè ø

+

L

 whenever 
, ,

2 1.
n n

K M
d d

£+  

Proof. 

Set 
1

1
[ (| | ) ( (| | | )]

i n i i n i i n i
X a X I X E X I Xh h-

-
= £ - £% F , 

1

n

n i
i

S X
=

= å% % . Then, 

1 1

( ( / ), (0,1)) ( ( ), (0,1))

(| | (| | ))
                            .

W n n W n

n

n

d S a N d S N

nE X I X

a

h

£

>
+

%L L

  (0.2) 
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 1

2(1 )

, , , ,

( ( ), (0,1))

(2 ) (1 | log(2 |),

W n

n n n n

d S N

C L N L Nd

d d d d

+£ + + +

%

% % % %

L

  

where 

2 2

,
1

(| | )
n

n i
i

L E X d

d

+

=

= å% %  

2 2

2 2 1 1

2 2

(| | (| | ))
2 n

n

nE X I X

a

d

d

d

h+

+

+

£
£  

 

2 2 2

2 2 1 1

2 2

(| | (| | ))
2

( )

n n

n n

E X I X

a h

d

d

d

h h

h

+

+

+

£
£   

,
,

n
K

d
=   

and where 

1
2

, ,
)( 1

n n n
N E V M

d

d d

+

= - =% %   

Thus, 

1

2(1 )

, , , ,

( ( ), (0,1))

(2 ) (1 | log(2 ) |)

W n

n n n n

d S N

C K M K Md

d d d d

+£ + + +

%L

  (0.3) 

On the other hand 

1 1

2

1 1

(| | (| | ))

(| | (| | ))
.

( )

n

n

n n

n

n n

nE X I X

a

E X I X
Q

a h

h

h h

h

>

>
£ =

  (0.4) 

Combining (1.2), (1.3) and (1.4) yield the 

conclusion of Theorem 3. 

3. Conclusion 

Through this article, we have obtained some results 

of the convergence rate in the mean central limit 

theorems for sequences of general martingale 

differences with finite or infinite variances.  
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VỀ TỐC ĐỘ HỘI TỤ TRONG MỘT SỐ ĐỊNH LÍ GIỚI HẠN TRUNG TÂM THEO TRUNG BÌNH 
 

Tóm tắt: Cho ( ;1 )kX k n   là dãy hiệu martingale tương thích với dãy  - đại số 0 1 ... n  F F F , trong đó phương sai của 

biến ngẫu nhiên kX  có thể hữu hạn hoặc vô hạn. Mục đích của bài báo này là thiết lập tốc độ hội tụ trong định lí giới hạn trung tâm 

theo trung bình cho tổng 1 ...n nS X X= + + bằng phương pháp của Bolthausen [2], Haeusler [8] kết hợp với kết quả của Röllin [10].  

Từ khóa: phương sai vô hạn; định lí giới hạn trung tâm; tốc độ hội tụ; biến ngẫu nhiên; hiệu martingale. 


