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Abstract: In this work we take into consideration the calculation of the photodetachment cross section of

negatively charged hydrogen ions through the use of an effective-charge model and the two-electron
Green’s function for summation over final states of the system. The analytical form of this function is
obtained by the convolution of the one-particle Coulomb Green’s functions in the framework of the
regular perturbation theory and the operator method. In order to obtain results, we have approximated
the value of the Green function via the numerical method with the support of the Mathematica software.
In contrast to former ab initio calculations, our approach leads to a greater theoretical value than the

experimental one.

Key waords: effective-charge model; transition matrix elements; photodetachment cross section;
Coulomb Green'’s function; regular perturbation theory.

1. Introduction

The problem of photodetachment cross section of
the negatively hydrogen ion (H°) is of great interest to
astrophysicists because the process mainly determines
the absorption of infrared and visible light in the
photosphere of stars over a wide temperature range
(Aller, 1963; Motz, 1970). A detailed overview of the
theoretical and experimental result obtained in the study
of this process was already presented (Vandevraye,
Babilotte, Blondel, 2014) [3]. The high precision
measurements of the photodetachment cross section
were described in this article and a substantial
difference between experimental and theoretical results
have been found. As noted in a study (Vandevraye,
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Babilotte, Blondel, 2014), H- ion is one of the simplest
quantum systems and the treatment of this difference is
crucial to clarify the role of electron correlations in the
description of the interaction of atoms with external

fields. It is important to emphasize that the energy and
the wave functions of the initial (ground) state H- were
found via a variational method with a very high
accuracy (Frolov, 2003; Frolov, 2015). Possibly, a
major source of discrepancy between the theory and the
experiment was defined by correlative effects in the
calculation of a sum over the final states of the system
that consists of hydrogen atom and electron.

It is known that in the case of the interaction of a
hydrogen atom with external fields, the summation over the
final states can be performed by a presentation of this sum
through the one-particle Green’s function of an electron in
the Coulomb field (Dalgarno, Lewis, 1955; Shakeshaft,
2004). With this approach, the calculation of matrix
elements and the summation over the final state reduce to
integration of the well-known analytical expression together
with the wave function of the initial state.

In the case of H- there are twoelectrons in the final
state and the analogous approach leads to the two-
particle Green’s function. Recently, in our work
(Feranchuk, Triguk, 2011) an analytical representation
for the Green’s function of the two-electron system in
the Coulomb field was obtained. It allowed us to
develop a regular perturbation theory (RPT) for
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calculating the energy and wave functions of the ground
and excited states of the helium atom. Already in the
second order, RPT ensures the accuracy of the
approximation about 0.1%. The important features of
RPT are the ability to calculate the corrections to zero
order approximation without introducing an additional
variational parameter and the possibility to generalize
this method for many-electron systems.

In the present article we approbate RPT for the
analysis of the transition probabilities in quantum
systems in the example of the calculation of the total
cross section for the H ion photodetachment. With this
purpose the considered cross-section is represented via
the Green’s function of an atomic system with the
energy corresponding to the initial state. In order to
illustrate the effectiveness of this method, the
photoionization cross section (photoelectric effect) for
the hydrogen atom is calculated and this result is
compared with the well-known value obtained by direct
summation over the final states (Barestetskii, Lifshitz,
Pitaevskii, 1980). For the two-electron system being H-
ion, the wave functions of the ground state and the
Green’s function of the final state of the system are
calculated on the basis in the zero approximation of
RPT. The theoretical value proves to be greater than the
experimental one in contrast to other ab initio
calculations (Vandevraye, Babilotte, Blondel, 2014).
General formulas for calculation of the next order
corrections are also deduced.

2.Green’s function of an atomic system and the
total photodetachment cross section

Let us consider the N electron atomic system which
is described by Hamiltonian H with the set of

eigenvectors |, (£)) and eigenvalues E,

H|¥, (&) =E,[¥,(9)), )

where the quantum numbers v include both continuous
and discrete spectrum, and the set of variables & is
defined by the coordinates and spins of all electrons.

We also introduce the Green’s function of the
system:

(H-E)Ge(5,6)=6(c.8);
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Interaction  between the atom and the
electromagnetic field for nonrelativistic approximation
is defined by the operator (Barestetskii, Lifshitz,
Pitaevskii, 1980) (h =c =1)

Ll,luﬂ
—eo AT (e, py) [ ik b
V, =—2 Z Sml (e' rar e 'aﬁ ) (3)
where eo(eo? = a = 1/137) is the electron charge, m is its

w
mass; p, is the momentum operator of the atomic

electron; af s,a{:s are the operators of annihilation and

creation of the photon with polarization e, , wave vector
1 1
k and frequency w=|k]|.

We use below the atomic units with m = 1; the
length and the energy are measured in the Bohr radius ao
and the atomic unit of energy &g, correspondingly.

holeV]
€0

a, =0.529.10 % cm; &, = 27.21eV; 0 - ——— . (4)

For the photon frequency range, which is of interest
in the considered problem, one can use the dipole
approximation omitting exponent in the operator (3).
Then, in the first-order perturbation theory on the
operator Ve, the total photon absorption cross section

with the transition of an atom from the initial state |\;)

to all possible final states |‘Pf> is given by the

following formula (Barestetskii, Lifshitz, Pitaevskii,

1980).

-4 X |G zv.w

When the photon frequency (o + E;) > 0, i.e E;> 0,
this expression describes the cross section of the
photoelectric effect, when the atomic system goes into
the states of the continuous spectrum. Let us now use
the identity

S(E +o-E;). (5)

The square of the matrix element is a real value and
based on the definition (5) the formula (5) can be
transformed as:
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Thus, the calculation of the matrix elements and
summation over the final states of the system are
reduced to the integration of the Green’s function with
the initial wave functions.

In order to evaluate effectiveness of the considered
approach, let us calculate the cross section of the
photoelectric effect for the hydrogen atom with the
nucleus charge Z. In this case the summation in (5) can
be done analytically (Barestetskii, Lifshitz, Pitaevskii,
1980). In this case, the wave function of the ground
state has the simple form:

r 07325721 72
Wi (r) = Ryp(r)Yoo () :WQ Ei =E, == (8)

Without loss of the generality, the quantization axis
when integrating over the angular variables of the atom
can be directed along the photon polarization vector

1
es || Oz, so that

wu r r 4z
(e, V)¥;(r)=-Zcos@¥;(r)=-2Z \/7Y10 QY (r)

For a one-electron atom, the analytical solution of
the equation (2) is well known and defines the so-called
Coulomb Green’s function (CGF). It is written, for
example, in (Veselov, Labzovskii, 1986). Using its
expansion on spherical harmonics

GE(r r) Z

ImI

-G ()Y, m (Y| m (29, 9)

and integrating over the angular variables, one can find
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The radial part of CGF can be written as the
product of the Whittaker functions (Gradshtein, Ryzhik,
1963).

1 vI'(2-V) 2Z
Gole (T ):TM) v3/2( F Mgz (=),
e o2 —;r_=min(r,r’),r, =max(r,r’).

1/—2(a)+ E, -i9)
(10)
Then one can obtain
8raz*
o=~ Ims|vI(2-v)x
o, MY

0 r
x J.er.dr'nys,z(—r) 3,2(—r)e_z(r”')rf'+ (11)

o I 27
+Idrjdr Mv,s/z(Tr) 3/2(—r )

Note that the parameter 3—0 defines the correct
branch of the complex valued parameter v, which
should correspond to a positive sign of ¢ in (11).

The integral in the equation (11) can be calculated
numerically with the Mathematica package with any
required accuracy. The obtained results coincide exactly
with the results of the calculation of the photoelectric
effect cross section for the hydrogen atom when the
direct summation over the final states can be fulfilled
analytically (Barestetskii, Lifshitz, Pitaevskii, 1980)n in
order to pass to the conventional units, the result should

be multiplied by a2 ~2.8x107* cm?
o 29 1o (l E, |j4 Auarccigu . 1B |

U= . (12
372 1-g72m o+E, (12)
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Figure 1. The dependence of o on w: (*) — numerical
results, (+) — the results of calculations using formula (12)

3.Photodetachment cross section for a two-
electron system

Let us consider now the problem of the ion H-
photodetachment. In this case the analytical solution of
equations (1) and (2) are not found. Therefore one
should use approximate methods for calculating both
the wave function of the initial state and the Green’s
function of the final states. In this article we use the
approach based on the regular perturbation theory
(RPT) described in Refs. (Feranchuk, Triguk, 2011;
Feranchuk, Ivanov, VH Le, Ulyanenkov, 2015).

In order to solve the Schrodinger equation (1) for
the initial state vector in the framework of RPT, the
Hamiltonian of zero approximation and the perturbation
operator are chosen as follows:

H|¥(1L2))=Ey|¥,(L2)); H=Hy(L2)+V;
Ho(.2) =2 (pf + p3 ) -2 [%%j 13)

1 2

1 1
V({L,2)=—(Z - Z)[—+—]+—r—|;
n ) |ri-r2|

Here the effective charge Z* is the only variational
parameter. With this choice the perturbation theory on
the operator V(1;2) leads in the second order of RPT to
the following analytical results:

26

By ~-Z2 +§z ~0.15759;
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rr o T
Wo(ri,r2) = Wy’ (ri,r2) -

S S o
—Idrl'drz‘GE (Z*,r1,r2, 11 r2 V(@ 2)¥y ' (ra',r2").

(14)

The summation over the intermediate states when

calculating the second order corrections in the

framework of RPT was fulfilled by means of the
analytlcal representatlon for the two-particle CGF

G(Z)(E r1,rz r1 rz) (Feranchuk, Triguk, 2011;

Feranchuk, Ivanov, VH Le, Ulyanenkov, 2015). It was
also shown that the optimal value Z* = Z - 5/16 for the
variational parameter is calculated from the condition

E® =0.

For the ion H, Z = 1, Eq ~ -0.5326, so that the
oneparameter function (14) ensures accuracy ~1% in
comparison with the variational energy calculation
based on the trial wave function of the ground state with
a large number of parameters (Eo = -0.5278) (Frolov,
2015). It seems to us that such accuracy is sufficient for
the considered problem, for the discrepancy between the
experimental and theoretical values being found in Ref.
(Vandevraye, Babilotte, Blondel, 2014) is about 20%.

In the final state of the system, a single electron is
at a bound state, and the other goes into a continuous
spectrum. Therefore the correlation between electrons is
rather small and the zero order Hamiltonian should be
selected as follows:

H|¥((L2))=E¢[W@02)iH =H}(1,2)+V;

Ho(1,2) == (Pl +P2) z(i+ij V,(12) =+ r .

h h [ri-rz|

(15)

The operator of the ion interaction with the
electromagnetic field does not depend on the spin of
electrons, so the initial and final states of the ion H-
corresponds to the total spin S = 0 and the symmetric
wave function of the coordinates. Therefore the RPT

expansion for |‘Pf @, 2)> is different from (14):
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Here oy are the well-known electron wave

functions in the Coulomb field of the nucleus
corresponding to discrete and continuous spectra
correspondingly.

Taking into account the symmetry of the wave
functions of the electron coordinates, the expression (7)
for the H- photodetachment cross section can be written
in the following form:

t6ra ol
zTﬂ-a|mZ

Here | = 0.5278 is the H- ionization potential
calculated, for example, in Ref. (Frolov, 2015). In the
experiment (Vandevraye, Babilotte, Blondel, 2014) the
cross section was measured with a photon wavelength
of 1064 nm which corresponds to the frequency value
=0.04282 in the atomic units.

rr ,wmur rr 2
lI'f(r1,rz)‘(esvl)‘\lfi(rl,rz)>‘
w-1-E; —id

(17)

In accordance with (7) one can represent the value
(17) as the following integral:

167ra

J.dé:Gw I .5(I’1,I’2 r1 rz PES
r (18)
x(esvl\lfi(rl,rz))(esvl.\pi(rl-,rz')),

where dE=drdradri'drs’ and

1 1 1 1
G, _is(ri,rz2,r1',r2") is the two-electron Green’s
function that should be found from Eq.(2) with
Hamiltonian (15).

In the present article we restrict ourselves to the
RPT zero approximation for the calculation of the
integral (18). It means that the wave function of the
system ground state is chosen in the following form:

U] u -
W~ =y O w0 () =42 76 a9

In the same approximation the symmetrized two-
particle Green’s function is defined by the following
equation with Hamiltonian Hs (1; 2) from Eq.(15):

(Hy —0+1+i8)GO, s (T, 1y, 17)
I r r r
=06(R -1 )o(h —Iy);
rrr r,
Gc(oo—)l—ié(rl’rZ )=
|w“’)(q)w:’)(r2)><w$°>(r1w(°)(r2'>|

=3 N

= 2(l ~o+i5+E¢ +E¢ ) (20)

1:'2

'y @ )@ @) O O )]
2(l —w+i6+E; +E)
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One can find the function (20) as the convolution of
the analytical one-particle CGF by means of the trick
considered in Refs. (Feranchuk, Triguk, 2011;
Feranchuk, lvanov, VH Le, Ulyanenkov, 2015) for He
atom. Let us use the following identity:

® dt _ 27i
o (t+a—io/2)(t—b+is/2) a+b-io

. (21)

with real values a and b and a small parameter 5—0.
Then one can apply this identity to the expression

1

@—1—(Ef +E;p)—i5

_ L dt

_2 i Jd-o o—| 5
B )(t Efz+|2)

(18) (22)
This allows one to transform the two-particle
Green’s function as follows:

) rrror,
Ga) | ,5(r1,r2,r1',r2):
1

=— dt[G ) (rlv rl’)Ga) s (rz’ rz )
4ri 2 ol i ———t-is

2 2
+G, ti.é(rZ'rZ’)Ga)l . §(r1,r1!)]
2 2

2 2
(23)
Taking into account the spherical harmonics
orthogonality conditions when integrating over the

angles, the following result can be obtained after
summation over the photon polarizations:
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[ L_I+t—ié,l(l l’) ﬂ—t—ié,o(z 2)
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(26)
Expression (26) includes a five-dimensional
integral which was calculated numerically using the
package Mathematics and the interpolation of the results
for intermediate integrals. It should be noted that the
special numerical procedure was used for taking into
account the contributions of the first order poles of the
integrand on the parameter t.

The results for Z = 1 and ® = 0.04282 were
calculated and the corresponding photodetachment cross
section is approximately equal to 3.86 in comparison
with the experimental result 3.48+0.15 obtained in
(G'en'evriez, Urban, 2015).

4.Conclusion

The results show that the zero order calculation of
RPT transition matrix elements for the atomic system
delivers the same accuracy as that of stationary energy
states. A closed expression is firstly obtained for the
two-particle Coulomb Green's function, being useful to
calculate cross sections for many-body systems. At the
same time RPT allows us to calculate the correlative
corrections to the observed characteristics of the system
without introducing additional variation parameters.
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MO HINH BIEN TiCH HIEU DUNG POI VOI BAI TOAN TIET DIEN HIEU DUNG CUA
HYDROGEN TiCH PIEN AM

Toém tat: Mot phwong phap tiép can mai dé tinh tiét dién hiéu dung cla ion hydro tich dién am dwoc nghién clu va dé xuét.
Phwong phap gidi dwa trén viéc st dung mé hinh dién tich hiéu dung va ham Green hai dién t& déi véi trwdng hop tinh tdng cac
trang thai cudi cling clia hé. Dang gidi tich clia ham nay thu dwoc bang céch tich hop cac ham Green mét hat trong khuén khé cia ly
thuyét nhidu diéu chinh va phwong phap toan tir. Bé thu dwoc gia tri so sanh véi két qua thuc nghiém, ching téi da giai gan dang gia
tri ham Green bang phwong phap sé véi sw hd tro clia phdn mém Mathematica. Trai ngwoc véi cac phuong phap ban dau (ab initio),
céach tiép can clia ching ti dan dén gia tri ly thuyét I&n hon so véi gia tri thuc nghiém.

T khéa: mé hinh dién tich hiéu dung; cac phan t& ma tran chuyén tiép; tiét dién quang héa; ham Coulomb Green; ly thuyét

nhiéu loan diéu chinh, phwong phap toan ti.
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