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AN EFFECTIVE-CHARGE MODEL FOR THE PROBLEM OF 

PHOTODETACHMENT OF NEGATIVELY CHARGED HYDROGEN IONS 

Dung Van Lu 

Abstract: In this work we take into consideration the calculation of the photodetachment cross section of 

negatively charged hydrogen ions through the use of an effective-charge model and the two-electron 

Green’s function for summation over final states of the system. The analytical form of this function is 

obtained by the convolution of the one-particle Coulomb Green’s functions in the framework of the 

regular perturbation theory and the operator method. In order to obtain results, we have approximated 

the value of the Green function via the numerical method with the support of the Mathematica software. 

In contrast to former ab initio calculations, our approach leads to a greater theoretical value than the 

experimental one. 

Key words: effective-charge model; transition matrix elements; photodetachment cross section; 

Coulomb Green’s function; regular perturbation theory. 
 

1. Introduction 

The problem of photodetachment cross section of 

the negatively hydrogen ion (H-) is of great interest to 

astrophysicists because the process mainly determines 

the absorption of infrared and visible light in the 

photosphere of stars over a wide temperature range 

(Aller, 1963; Motz, 1970). A detailed overview of the 

theoretical and experimental result obtained in the study 

of this process was already presented (Vandevraye, 

Babilotte, Blondel, 2014) [3]. The high precision 

measurements of the photodetachment cross section 

were described in this article and a substantial 

difference between experimental and theoretical results 

have been found. As noted in a study (Vandevraye, 

Babilotte, Blondel, 2014), H- ion is one of the simplest 

quantum systems and the treatment of this difference is 

crucial to clarify the role of electron correlations in the 

description of the interaction of atoms with external 

fields. It is important to emphasize that the energy and 

the wave functions of the initial (ground) state H- were 

found via a variational method with a very high 

accuracy (Frolov, 2003; Frolov, 2015). Possibly, a 

major source of discrepancy between the theory and the 

experiment was defined by correlative effects in the 

calculation of a sum over the final states of the system 

that consists of hydrogen atom and electron. 

It is known that in the case of the interaction of a 

hydrogen atom with external fields, the summation over the 

final states can be performed by a presentation of this sum 

through the one-particle Green’s function of an electron in 

the Coulomb field (Dalgarno, Lewis, 1955; Shakeshaft, 

2004). With this approach, the calculation of matrix 

elements and the summation over the final state reduce to 

integration of the well-known analytical expression together 

with the wave function of the initial state. 

In the case of H- there are twoelectrons in the final 

state and the analogous approach leads to the two-

particle Green’s function. Recently, in our work 

(Feranchuk, Triguk, 2011) an analytical representation 

for the Green’s function of the two-electron system in 

the Coulomb field was obtained. It allowed us to 

develop a regular perturbation theory (RPT) for 
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calculating the energy and wave functions of the ground 

and excited states of the helium atom. Already in the 

second order, RPT ensures the accuracy of the 

approximation about 0.1%. The important features of 

RPT are the ability to calculate the corrections to zero 

order approximation without introducing an additional 

variational parameter and the possibility to generalize 

this method for many-electron systems. 

In the present article we approbate RPT for the 

analysis of the transition probabilities in quantum 

systems in the example of the calculation of the total 

cross section for the H ion photodetachment. With this 

purpose the considered cross-section is represented via 

the Green’s function of an atomic system with the 

energy corresponding to the initial state. In order to 

illustrate the effectiveness of this method, the 

photoionization cross section (photoelectric effect) for 

the hydrogen atom is calculated and this result is 

compared with the well-known value obtained by direct 

summation over the final states (Barestetskii, Lifshitz, 

Pitaevskii, 1980). For the two-electron system being H- 

ion, the wave functions of the ground state and the 

Green’s function of the final state of the system are 

calculated on the basis in the zero approximation of 

RPT. The theoretical value proves to be greater than the 

experimental one in contrast to other ab initio 

calculations (Vandevraye, Babilotte, Blondel, 2014). 

General formulas for calculation of the next order 

corrections are also deduced. 

2. Green’s function of an atomic system and the 
total photodetachment cross section 

Let us consider the N electron atomic system which 

is described by Hamiltonian H with the set of 

eigenvectors ( )v   and eigenvalues Eν 

( ) ( )v v vH E  =  ,  (1) 

where the quantum numbers ν include both continuous 

and discrete spectrum, and the set of variables ξ is 

defined by the coordinates and spins of all electrons. 

We also introduce the Green’s function of the 

system: 
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Interaction between the atom and the 

electromagnetic field for nonrelativistic approximation 

is defined by the operator (Barestetskii, Lifshitz, 

Pitaevskii, 1980) (ћ = c =1) 
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where e0(e0
2 = α = 1/137) is the electron charge, m is its 

mass; lp
uur

 is the momentum operator of the atomic 

electron; 
, ,

,
k s k s

a a+r r  are the operators of annihilation and 

creation of the photon with polarization se
uur

, wave vector 

k
r

 and frequency | |k =
r

. 

We use below the atomic units with m = 1; the 

length and the energy are measured in the Bohr radius a0 

and the atomic unit of energy ε0, correspondingly.  

8
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For the photon frequency range, which is of interest 

in the considered problem, one can use the dipole 

approximation omitting exponent in the operator (3). 

Then, in the first-order perturbation theory on the 

operator Ve, the total photon absorption cross section 

with the transition of an atom from the initial state i  

to all possible final states f  is given by the 

following formula (Barestetskii, Lifshitz, Pitaevskii, 

1980). 

2
2

1

4
( ) ( )
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f s l i i f

f l

e E E
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=

=    + − 
uur uur

. (5) 

When the photon frequency (ω + Ei) > 0, i.e Ef > 0, 

this expression describes the cross section of the 

photoelectric effect, when the atomic system goes into 

the states of the continuous spectrum. Let us now use 

the identity 

1 1
( ) Im .i f

i f

E E
E E i

 
  

+ − =
+ − −

  (6) 

The square of the matrix element is a real value and 

based on the definition (5) the formula (5) can be 

transformed as: 
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Thus, the calculation of the matrix elements and 

summation over the final states of the system are 

reduced to the integration of the Green’s function with 

the initial wave functions. 

In order to evaluate effectiveness of the considered 

approach, let us calculate the cross section of the 

photoelectric effect for the hydrogen atom with the 

nucleus charge Z. In this case the summation in (5) can 

be done analytically (Barestetskii, Lifshitz, Pitaevskii, 

1980). In this case, the wave function of the ground 

state has the simple form: 

3/2 2

10 00 0

2
( ) ( ) ( ) ;

24
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Without loss of the generality, the quantization axis 

when integrating over the angular variables of the atom 

can be directed along the photon polarization vector 

||se Oz
r

, so that 

10

4
( ) ( ) cos ( ) ( ) ( )

3
s i i ie r Z r Z Y r


  = −  = −  

uurur r r r
. 

For a one-electron atom, the analytical solution of 

the equation (2) is well known and defines the so-called 

Coulomb Green’s function (CGF). It is written, for 

example, in (Veselov, Labzovskii, 1986). Using its 

expansion on spherical harmonics 
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and integrating over the angular variables, one can find 
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The radial part of CGF can be written as the 

product of the Whittaker functions (Gradshtein, Ryzhik, 

1963). 
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Then one can obtain 
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Note that the parameter δ→0 defines the correct 

branch of the complex valued parameter ν, which 

should correspond to a positive sign of σ in (11). 

The integral in the equation (11) can be calculated 

numerically with the Mathematica package with any 

required accuracy. The obtained results coincide exactly 

with the results of the calculation of the photoelectric 

effect cross section for the hydrogen atom when the 

direct summation over the final states can be fulfilled 

analytically (Barestetskii, Lifshitz, Pitaevskii, 1980)n in 

order to pass to the conventional units, the result should 

be multiplied by 2 17 2
0 2.8 10 cma −   
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Figure 1. The dependence of σ on ω: (•) – numerical 

results, (+) – the results of calculations using formula (12) 

3. Photodetachment cross section for a two-
electron system 

Let us consider now the problem of the ion H- 

photodetachment. In this case the analytical solution of 

equations (1) and (2) are not found. Therefore one 

should use approximate methods for calculating both 

the wave function of the initial state and the Green’s 

function of the final states. In this article we use the 

approach based on the regular perturbation theory 

(RPT) described in Refs. (Feranchuk, Triguk, 2011; 

Feranchuk, Ivanov, VH Le, Ulyanenkov, 2015). 

In order to solve the Schrodinger equation (1) for 

the initial state vector in the framework of RPT, the 

Hamiltonian of zero approximation and the perturbation 

operator are chosen as follows: 

( )
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Here the effective charge Z* is the only variational 

parameter. With this choice the perturbation theory on 

the operator V(1;2) leads in the second order of RPT to 

the following analytical results: 
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  (14) 

The summation over the intermediate states when 

calculating the second order corrections in the 

framework of RPT was fulfilled by means of the 

analytical representation for the two-particle CGF 

(2)
1 2 1 2( , , ; ', ')EG E r r r r

r r r r
 (Feranchuk, Triguk, 2011; 

Feranchuk, Ivanov, VH Le, Ulyanenkov, 2015). It was 

also shown that the optimal value Z* = Z - 5/16 for the 

variational parameter is calculated from the condition 

(1)
0 0E = . 

For the ion H-, Z = 1, E0 ≈ -0.5326, so that the 

oneparameter function (14) ensures accuracy ~1% in 

comparison with the variational energy calculation 

based on the trial wave function of the ground state with 

a large number of parameters (E0 ≈ -0.5278) (Frolov, 

2015). It seems to us that such accuracy is sufficient for 

the considered problem, for the discrepancy between the 

experimental and theoretical values being found in Ref. 

(Vandevraye, Babilotte, Blondel, 2014) is about 20%. 

In the final state of the system, a single electron is 

at a bound state, and the other goes into a continuous 

spectrum. Therefore the correlation between electrons is 

rather small and the zero order Hamiltonian should be 

selected as follows: 

( )

0

2 2
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    (15) 

The operator of the ion interaction with the 

electromagnetic field does not depend on the spin of 

electrons, so the initial and final states of the ion H- 

corresponds to the total spin S = 0 and the symmetric 

wave function of the coordinates. Therefore the RPT 

expansion for (1,2)f  is different from (14): 
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Here ,v p
  ur  are the well-known electron wave 

functions in the Coulomb field of the nucleus 

corresponding to discrete and continuous spectra 

correspondingly. 

Taking into account the symmetry of the wave 

functions of the electron coordinates, the expression (7) 

for the H- photodetachment cross section can be written 

in the following form: 

2
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Here I = 0.5278 is the H- ionization potential 

calculated, for example, in Ref. (Frolov, 2015). In the 

experiment (Vandevraye, Babilotte, Blondel, 2014) the 

cross section was measured with a photon wavelength 

of 1064 nm which corresponds to the frequency value ω 

= 0.04282 in the atomic units. 

In accordance with (7) one can represent the value 

(17) as the following integral: 
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 and 
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 is the two-electron Green’s 

function that should be found from Eq.(2) with 

Hamiltonian (15). 

In the present article we restrict ourselves to the 

RPT zero approximation for the calculation of the 

integral (18). It means that the wave function of the 

system ground state is chosen in the following form: 
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In the same approximation the symmetrized two-

particle Green’s function is defined by the following 

equation with Hamiltonian Hf (1; 2) from Eq.(15): 
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One can find the function (20) as the convolution of 

the analytical one-particle CGF by means of the trick 

considered in Refs. (Feranchuk, Triguk, 2011; 

Feranchuk, Ivanov, VH Le, Ulyanenkov, 2015) for He 

atom. Let us use the following identity: 

2
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with real values a and b and a small parameter δ→0. 

Then one can apply this identity to the expression 
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This allows one to transform the two-particle 

Green’s function as follows: 
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Taking into account the spherical harmonics 

orthogonality conditions when integrating over the 

angles, the following result can be obtained after 

summation over the photon polarizations: 
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Expression (26) includes a five-dimensional 

integral which was calculated numerically using the 

package Mathematics and the interpolation of the results 

for intermediate integrals. It should be noted that the 

special numerical procedure was used for taking into 

account the contributions of the first order poles of the 

integrand on the parameter t. 

The results for Z = 1 and ω = 0.04282 were 

calculated and the corresponding photodetachment cross 

section is approximately equal to 3.86 in comparison 

with the experimental result 3.48±0.15 obtained in 

(G'en'evriez, Urban, 2015). 

4. Conclusion 

The results show that the zero order calculation of 

RPT transition matrix elements for the atomic system 

delivers the same accuracy as that of stationary energy 

states. A closed expression is firstly obtained for the 

two-particle Coulomb Green's function, being useful to 

calculate cross sections for many-body systems. At the 

same time RPT allows us to calculate the correlative 

corrections to the observed characteristics of the system 

without introducing additional variation parameters.  
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MÔ HÌNH ĐIỆN TÍCH HIỆU DỤNG ĐỐI VỚI BÀI TOÁN TIẾT DIỆN HIỆU DỤNG CỦA 

HYDROGEN TÍCH ĐIỆN ÂM 

Tóm tắt: Một phương pháp tiếp cận mới để tính tiết diện hiệu dụng của ion hydro tích điện âm được nghiên cứu và đề xuất. 

Phương pháp giải dựa trên việc sử dụng mô hình điện tích hiệu dụng và hàm Green hai điện tử đối với trường hợp tính tổng các 

trạng thái cuối cùng của hệ. Dạng giải tích của hàm này thu được bằng cách tích hợp các hàm Green một hạt trong khuôn khổ của lý 

thuyết nhiễu điều chỉnh và phương pháp toán tử. Để thu được giá trị so sánh với kết quả thực nghiệm, chúng tôi đã giải gần đúng giá 

trị hàm Green bằng phương pháp số với sự hổ trợ của phần mềm Mathematica. Trái ngược với các phương pháp ban đầu (ab initio), 

cách tiếp cận của chúng tôi dẫn đến giá trị lý thuyết lớn hơn so với giá trị thực nghiệm. 

Từ khóa: mô hình điện tích hiệu dụng; các phần tử ma trận chuyển tiếp; tiết diện quang hóa; hàm Coulomb Green; lý thuyết 

nhiễu loạn điều chỉnh, phương pháp toán tử. 


