TẠP CHÍ KHOA HỌC XÃ HỘI, NHÂN VĂN VÀ GIÁO DỤC

PHÂN TÍCH PHỔ CỦA ION Tb³⁺/Sm³⁺ TRONG THỦY TINH TeO₂ - B₂O₃ -ZnO - Na₂O

Nhận bài: 12 – 01 – 2017 Chấp nhận đăng: 28 – 03 – 2017 http://jshe.ued.udn.vn/

Trần Thị Hồng

Tóm tắt: Thủy tinh pha tạp Tb³⁺/Sm³⁺ có hợp phần TeO₂- B₂O₃ - ZnO - Na₂O - RE₂O₃ (RE:Tb, Sm) được chế tạo bằng phương pháp nóng chảy, các tính chất quang của các mẫu thủy tinh này được khảo sát thông qua phổ phát quang và phổ kích thích phát quang. Phổ phát quang của mẫu thủy tinh chỉ pha tạp ion Tb³⁺ khi kích thích bằng bước sóng 379nm thì phát ra bức xạ màu xanh đặc trưng tại vùng 543nm (${}^{5}D_{4} \rightarrow {}^{7}F_{5}$). Phổ phát quang của mẫu thủy tinh chỉ pha tạp Sm³⁺ khi kích thích bằng bước sóng 401nm thì phát ra bức xạ màu đỏ đặc trưng tại vùng 600nm (${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$). Với mẫu đồng pha tạp Tb³⁺/Sm³⁺, khi kích thích bằng bước sóng 379nm thì có sự truyền năng lượng từ Tb³⁺ sang Sm³⁺. Quá trình truyền năng lượng này được giải thích thông qua giản đồ các mức năng lượng.

Từ khóa: ion Tb³⁺; ion Sm³⁺; thủy tinh Tellurite; truyền năng lượng và tính chất quang.

1. Giới thiệu

Nghiên cứu và phát triển các vật liệu phát quang đã và đang thu hút được sự quan tâm đặc biệt của các nhà khoa học trên thế giới. Một số các nghiên cứu này dẫn đến sự ra đời của các thiết bị công nghệ mới như: thiết bị chiếu sáng tiết kiệm năng lượng thân thiện với môi trường, màn hình cỡ lớn, đặc biệt là sự ra đời của đèn LED trắng cũng như các sản phẩm công nghệ có ý nghĩa như đèn compact, chụp cắt lớp vi kỹ thuật số hay công nghệ đánh dấu hồng ngoại [1-6].

Để có được các ứng dụng như vậy, đầu tiên người ta chú ý tìm các vật liệu có năng lượng phonon nhỏ để giảm quá trình phát xạ nhiệt đa phonon và nâng cao tiết diện quang của các ion pha tạp. Trước đây, thủy tinh Silica có năng lượng phonon khá lớn (1100cm⁻¹). Trong khi đó, thủy tinh Chalcogenide năng lượng phonon khá thấp (khoảng 300cm⁻¹) nhưng thủy tinh Chalcogenide lại không có các tính chất như thủy tinh Silica, đó là sự ổn định cơ, bền hóa và bền cơ học. Vì vậy, thủy tinh kim loại nặng có hợp phần TeO₂ - B₂O₃ - ZnO - Na₂O

* Liên hệ tác giả Trần Thị Hồng Trường Đại học Sư phạm - Đại học Đà Nẵng Email: tthong@ued.udn.vn đại diện cho sự kết hợp này (có năng lượng phonon khoảng $650 - 750 \text{ cm}^{-1}$) [7-11].

Trong bài báo này, chúng tôi báo cáo các kết quả khảo sát tính chất quang học của các mẫu thủy tinh $TeO_2 - B_2O_3 - ZnO - Na_2O$ pha tạp Tb_2O_3 , pha tạp Sm_2O_3 và đồng pha tạp Tb_2O_3/Sm_2O_3 . Từ kết quả đo phổ phát quang và phổ kích thích phát quang, chúng tôi đã thu nhận được thông tin về sự truyền năng lượng từ ion Tb^{3+} sang Sm^{3+} , mà không có sự truyền năng lượng từ Sm^{3+} sang Tb^{3+} . Sử dụng tọa độ màu, chúng tôi đã xác định được tọa độ màu của các mẫu đã chế tạo.

2. Thực nghiệm

Tất cả các mẫu thuỷ tinh được chế tạo bằng phương pháp nóng chảy với các hóa chất ban đầu: TeO₂, H₂BO₃, ZnO, Na₂CO₃, Tb₂O₃ và Eu₂O₃ theo tỷ lệ sau:

 $50 TeO_2\mathchar`-29B_2O_3\mathchar`-10Na_2O\mathchar`-1Tb_2O_3$ (kí hiệu mẫu là TBT);

 $50 TeO_2\mathchar`-29B_2O_3\mathchar`-10Na_2O\mathchar`-1Sm_2O_3$ (kí hiệu mẫu là TBS);

50TeO₂-28B₂O₃-10ZnO-10Na₂O-1Tb₂O₃-1Sm₂O₃ (kí hiệu mẫu là TBTS).

16 | Tạp chí Khoa học Xã hội, Nhân văn & Giáo dục, Tập 7, số 1 (2017),16-21

Các hoá chất được trộn, nghiền với tỉ lệ thích hợp như trên và sấy ở nhiệt độ 100°C trong thời gian 24 giờ. Sau đó cho vào lò nung điện với tốc độ gia nhiệt 10°C/phút từ nhiệt độ phòng lên đến nhiệt độ 1350°C và giữ ở nhiệt độ này trong 2 giờ, sau đó hạ từ từ xuống nhiệt độ phòng. Tất cả các mẫu đều trong suốt, sau đó các mẫu được mài và đánh bóng trước khi tiến hành các phép đo quang học.

Tất cả các mẫu sau khi chế tạo đều được tiến hành kiểm tra cấu trúc bằng nhiễu xạ tia X trên máy nhiễu xạ XRD-D5000 và phổ hấp thụ được thực hiện trên hệ thiết bị UV-VIS-NIR, Carry-5000, Varian, USA tại Viện Khoa học vật liệu - Viện Hàn lâm Khoa học và Công nghệ Việt Nam. Phổ phát quang và kích thích phát quang được thực hiện trên hệ thiết bị FL3-22 spectrometer, Viện nghiên cứu phát triển, Trường đại học Duy Tân.

3. Kết quả nghiên cứu và khảo sát

3.1. Các đặc tính về cấu trúc

Kết quả nhiễu xạ được trình bày trên Hình 1. Từ giản đồ nhiễu xạ cho thấy các mẫu đều có cấu trúc vô định hình. Hay nói cách khác, với quy trình chế tạo vật liệu đã lựa chọn thì hỗn hợp các chất ban đầu đã nóng chảy hoàn toàn và sản phẩm thu được có dạng thủy tinh.

Hình 1. Giản đồ nhiễu xạ tia X của các mẫu TBT TBS và TBTS

3.2. Tính chất phát quang của các mẫu thủy tinh TBT và TBS

3.2.1. Tính chất phát quang của mẫu TBT

Hình 2 trình bày các kết quả đo phổ phát quang và kích thích phát quang của ion Tb³⁺ trong mẫu TBT. Sử dụng bước sóng kích thích 379nm, phổ phát quang của

ion Tb³⁺ trong mẫu TBT gồm các dải phát xạ đặc trưng của ion Tb³⁺. Các cực đại khoảng 488, 543, 586 và 621nm tương ứng với năng lượng được giải phóng bởi quá trình hồi phục của điện tử từ mức ${}^{5}D_{4}$ xuống các mức ⁷F_J (J=6, 5, 4, 3). Trong đó, dịch chuyển ⁵D₄ \rightarrow ⁷F₅ (543nm) có cường độ lớn nhất và kết quả này phù hợp với các công bố [12, tr.13]. Phổ kích thích phát quang của ion Tb³⁺ trong mẫu TBT được thực hiện bằng cách ghi sư thay đổi cường độ bức xạ 543nm ứng với chuyển dời ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ của ion Tb³⁺ khi thay đổi năng lượng kích thích trong dải 325 đến 525nm. Kết quả cho thấy phổ gồm các vạch kích thích đặc trưng của các chuyển dời f – f của ion Tb³⁺. Các đỉnh kích thích quan sát được chủ yếu do sư đóng góp bởi các chuyển dời điện tử từ mức ${}^{7}F_{6}$ lên các mức năng lượng cao hơn của ion Tb³⁺. Theo các công bố [14-17], các dịch chuyển này tương ứng là: ${}^{7}F_{6} \rightarrow {}^{5}H_{7}$ (319nm), ${}^{7}F_{6} \rightarrow {}^{5}L_{8}$ (341nm), ${}^{7}F_{6} \rightarrow {}^{5}L_{9}$ (352nm), ${}^{7}F_{6} \rightarrow {}^{5}G_{5}$ (359nm), ${}^{7}F_{6} \rightarrow {}^{5}L_{10}$ (369nm), ${}^{7}F_{6} \rightarrow {}^{5}G_{6}$ (379nm) và ${}^{7}F_{6} \rightarrow {}^{5}D_{4}$ (488nm). Cường độ vạch kích thích tương ứng với chuyển dòi ${}^{7}F_{6} \rightarrow {}^{5}G_{6}$ (379nm) khá mạnh và có độ rộng phổ hẹp, trong khi các chuyển dời còn lại có cường độ yếu hơn. Dựa vào giá trị năng lượng các dải kích thích của ion Tb³⁺, chúng ta có thể thiết lập giản đồ một số mức năng lương điên tử của trang thái kích thích của ion Tb³⁺ (Hình 4a). Các kết quả này cho thấy vật liêu thủy tinh này khi pha tạp Tb³⁺ phát quang màu xanh lá cây có thể ứng dụng làm vật liệu chế tạo LED phát quang ánh sáng màu xanh lá cây.

Hình 2. Phổ kích thích (a) và phổ phát quang (b) của ion Tb³⁺ pha tạp trong mẫu TBT

3.2.2. Tính chất quang của mẫu TBS

Hình 3 mô tả phổ phát quang và phổ kích thích phát quang của ion Sm³⁺ pha tạp trong thủy tinh TBS. Khi sử dụng bước sóng 401nm để kích thích cho mẫu thủy tinh TBS, phổ phát quang gồm các dải phát xạ đặc trưng của ion Sm³⁺ có các đỉnh phát xạ khoảng 562, 600, 645 và 710nm tương ứng với năng lượng được giải phóng bởi quá trình hồi phục của điện tử từ mức ${}^{4}G_{5/2}$ xuống các mức ${}^{6}H_{J}$, (J= 5/2, 7/2, 9/2, 11/2) [18-22].

Phổ kích thích phát quang của mẫu TBS chỉ pha tạp Sm³⁺ được thực hiện bằng cách ghi sự thay đổi cường độ bức xa 600nm ứng với chuyển dời ${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$ của ion Sm³⁺ khi thay đổi năng lượng kích thích trong dải 350 đến 500nm. Cũng giống như trong trường hợp của ion Tb³⁺, Hình 3 cho thấy phổ gồm các vạch kích thích đặc trưng của các chuyển dời f – f của ion Sm³⁺. Các đỉnh kích thích quan sát được chủ yếu do sự đóng góp bởi các chuyển dời điện tử từ mức ⁶H_{5/2} lên các mức năng lượng cao hơn của ion Sm³⁺. Theo các công bố [18 – 22], các dịch chuyển này tương ứng là ${}^{6}H_{5/2} \rightarrow {}^{4}D_{3/2}$ (362nm), ${}^{6}H_{5/2} \rightarrow {}^{6}P_{7/2}$ (375nm), ${}^{6}\text{H}_{5/2} \rightarrow {}^{4}\text{F}_{7/2}$ (401nm), ${}^{6}\text{H}_{5/2} \rightarrow {}^{6}\text{P}_{5/2}$ (417nm), ${}^{6}\text{H}_{5/2} \rightarrow {}^{4}\text{G}_{9/2} \text{ (439nm) và } {}^{6}\text{H}_{5/2} \rightarrow {}^{4}\text{I}_{9/2,11/2,13/2} \text{ (476nm)}.$ Từ đây, chúng ta thiết lập giản đồ các mức năng lượng điện tử của các trang thái kích thích ion Sm³⁺ và được trình bày ở Hình 4b. Các kết quả này cho thấy vật liệu thủy tinh này khi pha tạp Sm³⁺ thì phát quang màu đỏ cam có thể ứng dụng làm vật liệu chế tạo LED phát quang ánh sáng màu đỏ cam.

Hình 3. Phổ kích thích (a) và phổ phát quang (b) của ion Sm³⁺ trong mẫu TBS

Hình 4. Giản đồ các mức năng lượng của ion Tb³⁺ và Sm³⁺ trong mẫu TBT (a) và TBS (b)

3.3. Tính chất phát quang của mẫu thủy tinh TBTS. Sự truyền năng lượng từ Tb³⁺ sang Sm³⁺

Hình 5 và 6 trình bày phổ phát quang của mẫu TBTS đồng pha tạp ion Tb³⁺ và ion Sm³⁺ được kích thích ở các bước sóng khác nhau 379nm và 401nm. Sử dụng bước sóng kích thích 379 nm cho mẫu đồng pha tap ion Tb³⁺/Sm³⁺ (Hình 5), phổ phát quang của mẫu TBTS gồm các dải phát xạ có cực đại khoảng 488, 543, 562, 600, 645 và 710 nm. Khi so sánh với công bố [9, 12 - 13, 16, 18] cho thấy dải phát xạ có cực đại tại 488 nm và 543 nm là chuyển dời tương ứng với ${}^{5}D_{4} \rightarrow F_{6}$, ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ của ion Tb³⁺. Các dải phát xạ còn lại 562, 600, 645 và 710nm là chuyển dời tương ứng với ${}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2}, {}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}, {}^{4}G_{5/2} \rightarrow {}^{6}H_{9/2}$ và 4G5/2→6H11/2 của ion Sm3+. Trong khi đó, nếu sử dụng bước sóng kích thích 401nm cho mẫu đồng pha tap ion Tb³⁺/Sm³⁺ trong mẫu TBTS (Hình 6) thì phổ phát quang gồm các dải phát xạ đặc trưng của ion Sm³⁺ có các cực đại khoảng 562, 600, 645 và 710nm, mà không thấy có sự xuất hiện các chuyển dời của ion Tb³⁺. Các dải phát xạ này tương ứng với năng lượng được giải phóng bởi quá trình phục hồi của điện tử từ mức 4G_{5/2} xuống các mức 6H_J, cụ thể là ${}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2}, {}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}, {}^{4}G_{5/2} \rightarrow {}^{6}H_{9/2}$ và ${}^{4}G_{5/2} \rightarrow {}^{6}H_{11/2}$ của ion Sm³⁺.

Hình 5. Phổ phát quang của mẫu TBTS với bước sóng kích thích 379nm

Hình 7. Phổ phát quang của mẫu TBT (nét đứt) và phổ hấp thụ của mẫu TBS (nét liền)

Vị trí cực đại và độ rộng phổ của các dải phát xạ thay đổi không nhiều so với mẫu thủy tinh TBS chỉ pha tap ion Sm³⁺. Như vậy, kết hợp các phổ phát quang của mẫu đồng pha tạp ion Tb³⁺/Sm³⁺ ở Hình 5, Hình 6 và sự che phủ giữa phổ phát quang của ion Tb³⁺ pha tạp trong mẫu TBT với phổ hấp thụ của ion Sm³⁺ trong mẫu TBS thể hiện trên Hình 7, khẳng định trong mẫu TBTS đồng pha tạp ion Tb³⁺/Sm³⁺ có sự truyền năng lượng từ ion Tb³⁺ sang ion Sm³⁺ khi kích thích ở bước sóng 379nm, mà không có sự truyền năng lượng ngược lại từ ion Sm³⁺ sang ion Tb³⁺ khi kích thích ở bước sóng 401nm. Sư truyền năng lượng này có thể giải thích cụ thể hơn thông qua giản đồ các mức năng lượng của Tb³⁺ và Sm³⁺ trong Hình 8. Sau khi hấp thụ năng lượng ánh sáng có bước sóng khoảng 379nm, điện tử trong ion Tb³⁺ ở trạng thái cơ bản ⁷F₆ chuyển lên trạng thái kích thích 5G6, sau đó phục hồi không bức xạ về mức thấp

Hình 6. Phổ phát quang của mẫu TBTS với bước sóng kích thích 401nm

Hình 8. Giản đồ các mức năng lượng của ion Tb³⁺ và Sm³⁺. Sự truyền năng lượng và phát xạ của các cặp ion Tb³⁺/Sm³⁺ trong mẫu TBTS

nhất của trạng thái kích thích ${}^{5}D_{4}$. Từ đây, điện tử tiếp tục giải phóng năng lượng để trở về trạng thái cơ bản và bức xạ ra ánh sáng màu xanh lá cây đặc trưng của ion Tb³⁺ ($\lambda = 543$ nm).

Mặt khác, mức năng lượng điện tử ${}^{5}D_{4}$ của ion Tb³⁺ xấp xỉ với năng lượng điện tử ${}^{4}G_{7/2}$ của ion Sm³⁺. Vì vậy, năng lượng phát xạ của ion Tb³⁺ sẽ truyền cho các điện tử trong ion Sm³⁺ và đưa các điện tử trong ion Sm³⁺ từ trạng thái cơ bản ${}^{6}H_{5/2}$ lên trạng thái kích thích ${}^{4}G_{7/2}$ phục hồi không bức xạ về mức thấp nhất của trạng thái kích thích ${}^{4}G_{5/2}$. Từ trạng thái kích thích ${}^{4}G_{5/2}$, điện tử trong ion Sm³⁺ tiếp tục thực hiện các chuyển dời về trạng thái cơ bản và phát ra các bức xạ đặc trưng của ion Sm³⁺ liên quan đến các chuyển dời giữa các mức năng lượng điện tử của ion Sm³⁺ là ${}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2}$, ${}^{1/2}$, ${}^{9/2}$, ${}^{11/2}$. Như vậy, quá trình truyền năng lượng từ ion Tb³⁺ đến ion Sm³⁺ trong

thủy tinh này khá giống với sự truyền năng lượng từ ion Tb^{3+} đến ion Sm^{3+} trong các công bố gần đây [23 - 26].

Hình 9. Tọa độ màu của mẫu TBT (a), TBS (b) và TBTS(c)

Sử dụng tọa độ màu (Hình 9) ta xác định tọa độ màu của các mẫu TBT, TBS và TBTS tương ứng khi kích thích ở bước sóng 379nm, 401nm và 379nm. Từ Hình 9 cho biết tọa độ màu của các mẫu như sau: TBT (0,2875; 0,5856; 0,1269); TBS (0,5875; 0,3118, 0,1007) và TBTS (0,3975; 0,4056; 0,1969). Như vậy, mẫu đồng pha tạp TBTS phát quang màu vàng cam. Đó là sự trộn của hai bức xạ màu đỏ cam và xanh lá cây phát ra từ Sm³⁺ và Tb³⁺, màu đỏ cam của Sm³⁺ dịch chuyển về vùng có bước sóng ngắn hơn, còn màu xanh lá cậy của Tb³⁺ dịch chuyển về vùng có bước sóng dài hơn.

4. Kết luận

Chế tạo thành công các mẫu thủy tinh với các hợp phần TeO₂ - B₂O₃ - ZnO - Na₂O - RE₂O₃ (RE = Tb, Sm) bằng phương pháp nóng chảy. Từ đó tiến hành khảo sát cấu trúc và các tính chất quang của chúng. Qua đó cho biết có sự truyền năng lượng từ Tb³⁺ sang Sm³⁺ mà không có sự truyền năng lượng từ Sm³⁺ sang Tb³⁺ và có sự dịch chuyển tọa độ màu khi đồng pha tạp Tb³⁺/Sm³⁺. Kết quả này đã mở ra hướng nghiên cứu mới là ta có thể pha tạp thêm những thành phần nào đó để cho tọa độ màu dịch chuyển về vùng ánh sáng trắng để chế tạo LED trắng.

Tài liệu tham khảo

[1] A. Agarwal, I. Pal, S. Sanghi and M.P. Aggarwal (2009), Judd–Ofelt parameters and radiative properties of Sm³⁺ ions doped zinc bismuth borate glasse, Opt. Mater. 32, pp.339-344.

- [2] S. Arunkumar, K.V. Krishnaiah, K. Marimuthu (2013), Structural and luminescence behavior of lead fluoroborate glasses containing Eu³⁺ ions, Physica B 416, pp.88-100.
- [3] P. Babu, Jang Kyoung Hyuk, Kim Eun Sik, Shi Liang, R. Vijaya, V. Lavín, C.K. Jayasankar, Seo Hyo Jin (2010), Optical properties and energy transfer of Dy³⁺ - doped transparent oxyfluoride glasses and glass - ceramics, J. Non - Cryst. Solids 356, pp.236-243.
- [4] H. Guo, H. Zhang, J.J. Li, F. Li (2010), Blue-whitegreen tunable luminescence from Ba₂Gd₂Si₄O₁₃: Ce³⁺, Tb³⁺ phosphors excited by ultraviolet light, Opt. Express 18, pp.27257-27262.
- [5] T.T.Hong, P.T.Dung, V.X. Quang (2016), Energy transfer process Eu³⁺ ions doped in Tellurite glass, J. Electro. Mater. 45, pp.2569-2575.
- [6] T.T. Hong, P.D.H.Yen, V.X.Quang, P.T.Dung (2015), Luminescence properties of Ce/Tb/Sm codoped Tellurite glass for White Leds application, Mater. Trans. 56, 1419-1421.
- [7] A.Biswas, G.S.Maciel, R.Kapoor, C.S. Friend, P.N.Prasad (2003), Er³⁺-doped multicomponent solgel-processed silica glass for optical signal amplification at 1.5 μm, Appl. Phys. Lett., 82, pp.2389-2391.
- [8] K. Maheshvaran, P.K. Veeran, K. Marimuthu (2013), Structural and optical studies on Eu³⁺ doped boro-tellurte glasses, Solid State Sci. 17, pp.54-62.
- [9] O. Ravi, C.M. Reddy, L. Manol, B.D.P. Raju (2012), Structural and optical studies of Sm³⁺ ions doped niobium borotellurite glasses, J. Mol. Struct. 1029, pp.53-59.
- [10] W. Stambouli, H. Elhouichet, B. Gelloz, M. Ferid, N. Koshida (2012), Energy transfer induced Eu³⁺ photoluminescence enhancement in tellurite glass, J. Lumin. 132, pp.205-209.
- [11] Tao Lili, H. Tsang Yuen, Zhou Bo, Richards Billy, Jha Animesh (2012), Enhanced 2.0 μm emission and energy transfer in Yb³⁺/Ho³⁺/Ce³⁺ triply doped tellurite glass, J. Non - Cryst. Solids 356, pp.1644-1648.
- [12] G. Lakshminarayana, R. Yang, J.R. Qiu, M.G. Brik, G.A. Kumar, I.V. Kityk (2009), White light emission from Sm³⁺/Tb³⁺ codoped oxyfluoride aluminosilicate glasses under Uv light excitation, J. Phys. D: Appl. Phys. 42, pp.015414-015426.
- [13] A.D. Pearson, G.E. Peterson, W.R. Northover (1966), Tb³⁺ fluorescence and nonradiative energy transfer from Gd³⁺ to Tb³⁺ in borate glass, J. Appl. Phys. 37, pp.729-734.

- [14] T. Tsuboi (2004), Optical properties os Ce³⁺/Tb³⁺ codoped borosilicate glasses, Eur. Phys. J. Appl. Phys. 26, pp.95-101.
- [15] Wei RongFei, Zhang Hao, Li Fang, Guo Hai (2012), Blue-white-green tunable luminescence of Ce³⁺, Tb³⁺ co-doped Sodium Silicate glasses for White Leds, J. Am. Ceram. Soc. 95, pp.34-36.
- [16] Z. Xu, Y. Li, Z. Liu, D. Way (2005), Uv and X-ray excited luminescence of Tb³⁺-doped ZnGa₂O₄ phosphorts, J.Alloys Compd. 391, pp.202-205.
- [17] Zhang Mengfei, Liang Yujun, Tang Rui, Yu Dongyan, Tong Miaohui, Wang Qiang, Zhu Yingli, Wu Xingya, Li Guogang (2014), Highly efficient Sr₃Y₂(Si₃O₉)₂:Ce³⁺, Tb³⁺/Mn²⁺/Eu²⁺ phosphors for white LEDs: structure refinement, color tuning and energy transfer, RSC Adv. 4, pp.40626-40637.
- [18] Ravi Babu Y.N.Ch., Sree Ram Naik P., Vijaya Kumar K., Rajesh Kumar N., Suresh Kumar A. (2012), Spectral investigations of Sm³⁺ doped lead bismuth magnesium borophosphate glasses, J. Quant. Spectrosc. Radiat. Transfer 113, pp.1669-1675.
- [19] K. Maheshvaran, K. Linganna, K. Marimuthu (2011), Composition dependent structural and optical properties of Sm³⁺ doped bora-tellurite glasses, J. Lumin. 131, pp.2746-2753.
- [20] S.S. Sundari, K. Marimuthu, M. Sivaraman, S.S. Babu (2010), Composition dependent structural and

optical properties of Sm^{3+} - doped sodium borate and sodium fluoroborate glasses, J.Lumin.130, pp.1313-1319.

- [21] A. Thulasiramudu, S. Buddhudu (2007), Optical characterization of Sm³⁺ and Dy³⁺: ZnOPbO-B₂O₃ glasses, Spectrochim. Acta A 67, pp.802-807.
- [22] L. Zhu, C. Zuo, Z. Luo, A. Lu (2010), Photoluminescence of Dy³⁺ and Sm³⁺: SiO₂- Al₂O₃-LiF-CaF₂ glasses, Physica B 405, pp.4401-4406.
- [23] A. Bahadur, Y. Dwivedi, S.B. Rai (2014), Enhanced luminescence and energy transfer study in Tb:Sm codoped lead fluorotellurite glass, Spectrochim. Acta, Part A: Mol. Spect., 118, pp.177-181.
- [24] Chen Quiaoqiao, Dai Nengli, Liu Zijun, Chu Yingbo, Ye Baoyuan, Li Haiqing, Peng Jinggang, Jiang Zuowen, Li Jinyan (2014), White light luminous properties and energy transfer mechanism of rare earth ions in Ce³⁺/Tb³⁺/Sm³⁺ co-doped glasses, Appl. Phys. A 115, pp.1159-1166.
- [25] C.P. Reddly, V. Naresh, R. Ramaraqhavulu, B.H. Rudramadevi, K.T. Reddy, S. Buddhudu (2015), Energy transfer based based emission analysis of (Tb³⁺, Sm³⁺): lithium zinc phosphate glasses, Spectrochim. Acta, Part A 144, pp.68-75.
- [26] L.G.Van Uitert, E.F. Dearborn, J.J. Rubin (1996), Mechanisms of energy transfer involving trivalent Tb and Sm, J. Chem. Phys. 45, pp.1578-1582.

SPECTRAL ANALYSIS OF Tb³⁺ /Sm³⁺ ION DOPED IN TeO₂ - B₂O₃ - ZnO - Na₂O GLASS

Abstract: The Tb³⁺/Sm³⁺ doped glass with its composition of TeO₂ -B₂O₃ - ZnO - Na₂O - RE₂O₃ (RE=Tb, Sm) has been synthesized via the melt quenching method; their luminescence properties are investigated through excitation and emission spectra. The photoluminescence spectrum of the Tb³⁺ ion singly doped glass shows a prominent *green* emission at 543nm (${}^{5}D_{4} \rightarrow {}^{7}F_{5}$) with an excitation of λ_{exc} =379nm (${}^{7}F_{6} \rightarrow {}^{5}G_{6}$). The photoluminescence spectrum of the Sm³⁺ doped glass reveals a bright *red* emission at 600nm (${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$) with an excitation of 401nm (${}^{6}H_{5/2} \rightarrow {}^{4}F_{7/2}$). The Tb³⁺/Sm³⁺ co-doped glass with an excitation of λ_{exc} =379nm exhibits an energy transfer from Tb³⁺ to Sm³⁺. This energy transfer process is explained by means of schemata showing energy levels.

Key words: Tb³⁺ ion; Sm³⁺ ion; Tellurite glass; energy transfer and luminescence properties.