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SOME NEW RESULTS IN THE EXISTENCE AND UNIQUENESS OF THE 

SOLUTION TO THE VARIATIONAL INEQUALITY PROBLEM AND ITS 

APPLICATION 

Pham Quy Muoia*, Van Ba Conga, Duong Xuan Hiepa, Phan Duc Tuana 

Abstract: In this article, we consider the existence and uniqueness of the solution to the variational 

inequality problems and applying these results to investigate the convergence and the convergent rate of 

a projection method for solving the problem. At first, we introduce the variational inequality problem in a 

general setting and some basic definitions. Then, we present normal results about the existence and 

uniqueness of the solution to this problem. After that, we prove new outcomes about the existence and 

uniqueness of the variational inequality problem. Finally, new results are used to study the convergence 

and convergence rate of the projection method to the variational inequality problem. 

Key words: variational inequality problem; existence of solution; uniqueness of solution; projection 

method; convergence; convergent rate. 
 

1.  Introduction 

The systematic study of variational inequality 

problems began in the the mid-1960s and have become 

a wide range of important tools to investigate and solve 

abundant problems including equilibrium problems 

arising in several branches of pure and applied sciences 

in a unified and general framework. Variational 

inequality theory is also closely related to optimization 

problems [2, 5]. 

The variational inequality problem is one of the 

central problems in nonlinear analysis. Hence, it attracts 

a huge number of investigation from numerous 

researchers in dynamic files in both theory and 

applications, such as the existence and uniqueness 

proposition of its solution, the algorithm to solve the 

solution and the quantities of its applications [6, 

12,13,1,8-11]. A number of results about the existence 

and uniqueness of variational inequality problems were 

found in [2, 4]. Also, numerous algorithms to solve 

problems about variational inequality were introduced 

and the convergence and the rate of its convergence 

were proved. (See [3, 7,12,13] for details.) 

In this article, we only concentrate on investigating 

the existence and uniqueness of variational inequality 

problems in the general form. Specially, we reintroduce 

some results and produce new outcomes about the 

existence and uniqueness of its solution. Some 

applications of new results in our article are related to 

the proof of convergence and rate of convergence of the 

projection method in variational equality problems in 

[2,6,12,13,1,8-11]. Given the application of our results, 

the unique assumptions of solutions in [2, Proposition 

5.3] and [2, Proposition 5.4] are not necessary. 

 

 

2. Preliminaries  

In this section, we introduce the variational 

inequality problem in the general form, present some 

basic definitions and some known results about the 

existence and uniqueness of the solution to the 

variational problem. These definitions and results are 
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closely relaed to our new outcomes, which are presented 

in the next section. 

Problem 2.1. (Variational inequality problem) 

Given a nonempty, subset C  of the Euclidean n-

dimensional space nR  and a mapping : nF C → R , the 

general variational inequality problem, denoted 

VI(F,C), is to find a vector 
*x C  such that  

* *( ), 0, .F x x x x C −      

The set of solutions to this problem is denoted 

( , ).SOL F C   

Definition 2.1. Let C  be nonempty, convex subset 

in nR , and let : nF C → R  be a mapping. The mapping 

F  is said to be 

(a) Strongly monotone on C  with constant > 0  

if for all pair of points ,x y C   

2( ) ( ), || || .F x F y x y x y − −   −
  

(1) 

 (b) Strictly monotone on C  if for all distinct 

,x y C   

( ) ( ), > 0.F x F y x y − − 
  

(2) 

 (c) Monotone on C  if for all pair of points 

,x y C , we have  

( ) ( ), 0.F x F y x y − −  
  

(3) 

 (d)  -Strongly pseudomonotone on C if for all 

pair of points ,x y C , we have  

2( ), 0 ( ), || || .F y x y F x x y x y −    −   −  (4) 

 (e) Pseudomonotone on C  if for all pair of points 

,x y C , we have  

( ), 0 ( ), 0.F y x y F x x y −     −  
  

(5) 

 (f) Quasimonotone on C  if for all pair of points 

,x y C , we have  

( ), > 0 ( ), 0.F y x y F x x y −    −  
  

(6) 

 (g) Lipschitz continuous on C  with > 0L  if for 

all ,x y C , we have  

|| ( ) ( ) || || || .F x F y L x y−  −
  

(7) 

 It follows from the definitions that the following 

implications hold: 

( ) ( ) ( ) ( ) ( ), ( ) ( ).a b c e f e d→ → → →   

Definition 2.2. Given C  be a nonempty set, 

convex subset of nR . A mapping : nF C → R  defined 

by  

( ) = {|| ||: },CP x argmin x y y C−   

is called projector onto C .  

Proposition 2.1 ([2, Proposition 1.2]) Let C  be a 

closed convex set. Then = ( )Cy P x  iff  

, 0, .y x z y z C − −    
  

(8) 

 In variational inequality ( , )VI F C  for each x C  

and > 0 , mapping : n
CF C →R  defined by  

( ) = ( ( )),C CF x x P x F x− −
  

(9) 

is often called natural map of F  onto C . The relation 

between the solution of variational inequality ( , )VI F C  

and the natural map is showed in the following results. 

Proposition 2.2 ([1, Proposition 2.2]). 
*x  is a 

solution of variational inequality problem ( , )VI F C  if 

*x  is a zero-point of mapping CF , i.e *( ) = 0CF x .  

Based on Proposition 2.2 and Brouwer fixed-point 

theory (see [2] for details), the results about the 

existence and uniqueness of solution in variational 

equality have been proven. For the proof, we refer the 

reader to [2, 4]. 

Proposition 2.3 ([1, Proposition 2.1]). Let C  be a 

closed, compact and convex subset of nR  and a 

continuous mapping : nF C → R . The set ( , )SOL F C  is 

nonempty.  

Proposition 2.4 ([2, Corollary 2.1]). Let C  be a 

nonempty, closed and convex subset of nR  and let 

: nF C → R  be a continuous. If F  is coercive mapping, 

i.e, exist 
0x C  such that  

( ) ( ),
,

|| ||

o o

o

F x F x x x

x x

 − − 
→ +

−
 as x → +P P  for 

x C  and for some 
0x C , then variational inequality 

( , )VI F C  has a solution.  

Proposition 2.5 ([4, Propostion 1.4]) If C  is a 

nonempty, closed and convex subset of nR  and 
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: nF C → R  be  -strongly pseudomonotone and 

Lipschitz continuous on C  then variational inequality 

( , )VI F C  has unique solution. 

3. Main results  

Theorem 3.1. If F  is a strictly monotone on C , 

then the problem ( , )VI F C  has at most one solution.  

Proof. Assume that 1x  and 2x  are solutions to 

Problem ( , )VI F C , 1 2x x . Then we have  

1 1( ), 0,F x x x x C −    
    

     (10) 

and  

2 2( ), 0, .F x x x x C −    
          

(11) 

 Replace x  to 1x  in (11) and x  to 2x  in (10), then 

add these two inequalities to yield: 

1 2 2 1( ) ( ), 0,F x F x x x x C − −      

or  

1 2 1 2( ) ( ), 0, .F x F x x x x C − −      

This contradict with the definition of strictly 

monotone function .F  Hence 1 2= .x x   

Corollary 3.1. Let C  be a nonempty, compact and 

convex subset of nR , and let : nF C → R  be a 

continuous and strictly monotone mapping on C . Then 

variational inequality ( , )VI F C  has a unique solution.  

Proof. From the Proposition 2.3 we obtain the 

existence of solution in problem ( , )VI F C . The 

uniqueness of solution is directly deduced from the 

Theorem 3.1. 

Corollary 3.2 Let C  be a nonempty, closed and 

convex subset of nR  and let : nF C → R  be a 

continuous. If F  is a continuous, strictly monotone and 

coercive mapping, i.e, there exists 
0x C  such that  

( ) ( ),
,

|| ||

o o

o

F x F x x x

x x

 − − 
→ +

−
 

as x → +P P  for x C  and for some 
0 ,x C  then 

variational inequality ( , )VI F C  has a unique solution.  

Proof. From the Proposition 2.4 we have the 

existence of solution in problem ( , )VI F C , the 

uniqueness of solution is deduced from Theorem 3.1. 

Theorem 3.2. If F  be  -strongly pseudomonotone 

on C  with > 0  then the ( , )VI F C  has a unique solution.  

Proof. Assume 1x  and 2x  are two solutions to the 

problem ( , )VI C F  and 1 2 .x x  Then, we have  

1 2 1( ), 0,F x x x x C−    
     

(12) 

and  

2 1 2( ), 0, .F x x x x C −    
     

(13) 

 

From (12) and the proposition of  -strongly 

pseudomonotone of F  on C  we deduce that  

2
2 2 1 2 1( ), || || > 0F x x x x x −   −

         
(14) 

 We can rewrite this inequality as  

2 1 2( ), < 0.F x x x  − 
         

 (15) 

 This contrasts with (13). Hence, 1 2=x x , or the 

problem ( , )VI F C  has a unique solution. 

Corollary 3.3. Let C  be a nonempty, compact and 

convex subset of nR  and let : nF C → R  be a 

continuous mapping and  -strongly pseudomonotone 

on C  with > 0 . Then, the ( , )VI F C  has a unique 

solution.  

Proof. From the Proposition 2.3, we deduce the 

existence of the solution in the ( , )VI F C . The 

uniqueness of the solution comes from the Theorem 3.2. 

Corollary 3.4. Let C  be a nonempty, compact and 

convex subset of nR  and let : nF C → R  be a 

continuous mapping and  -strongly pseudomonotone 

on C  with > 0  and satisfies the coercivity condition. 

Then, the ( , )VI F C  has a unique solution.  

Proof. From the Proposition 2.5, we can obtain the 

existence of the solution in the problem ( , )VI F C  and 

the uniqueness of its solution can be obtained from 

Theorem 3.2.  

4.  Application 
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In this section, we will use new results in previous 

parts in order to receive the convergence and the rate of 

convergence of a projection method for the ( , )VI F C . 

At first, we consider the projection method for the 

( , )VI F C  that was presented in [1]. 

Algorithm 1: 

 Step 1. Compute 1 := ( ( ))k k k
C kx P x F x+ − . If 

1 =k kx x+
 then stop. Otherwise, return to Step 2. 

 Step 2. Set := 1k k +  and return to Step 1. 

If Algorithm stops in step k , then 
kx  is a solution 

to the ( , )VI F C , see [2]. Otherwise, if Algorithm has 

infinite iteration, then the convergence and the rate of 

convergence are proven in the following theorem. 

Theorem 4.1 ([2, Theorem 5.3]). Let C  be a non 

empty, closed, convex subset of nR  and let : nF C → R  

be Lipschitz continuous with a constant > 0L  and  -

strongly pseudomonotone with > 0 . Choose iterated 

consequence k  such that  

2

2
0 < < < , 0,ka b k

L


   

         
(16) 

with ,a b  be positive numbers. Let 
kx  be defined by 

Algorithm 1. If 
*x  be a unique solution of ( , )VI F C  

then the consequence { }kx  converges linear to 
*x . 

Furthermore, the rate of convergence is defined by  

1
1 * 0 1

1

k
kx x x x





+
+ −  −

−
P P P P

     

(17) 

 and  

 

1 * 1 , 0,
1

k k kx x x x k




+ +−  −  
−

P P P P

     

(18) 

 as  

2

1
:= (0;1).

1 (2 )a bL





+ −
 

(19) 

  

Theorem 4.2 ([2, Theorem 5.4]). Let C  be a 

nonempty, closed, convex subset of nR  and 

: nF C → R  be Lipschitz continuous with a constant 

> 0L  and  -strongly pseudomonotone with > 0 . 

Choose iterated consequence k  such that  

0
=0

= 0, = .lim k k
h

k

 


→

+
  

(20) 

Assume that the ( , )VI F C  has a unique solution 

*x , then consequence 
kx  is defined by Algorithm 1 

converges to 
*x . Moreover, there exists 0k  such that  

2(2 ) > 0,k k L  −
  

(21) 

 

1 * *0

2

=
0

1
,

[1 (2 )]

kk

k

i i

i k

x x x x

L  

+ −  −

+ −

P P P P

  

(22) 

for all 0 .k k   

One of the conditions for obtaining results about the 

convergence and the rate of convergence of Algorithm 1 

that is received in the Theorem 4.1 and 4.2 is the 

uniqueness of the solution in the ( , )VI F C . Combining 

it with Corollary 3.3 and 3.4, we obtain the following 

results: 

Corollary 4.1. Let C  be a nonempty, closed, 

compact and convex subset of nR  and let : nF C → R  

be Lipschitz continuous with a constant > 0L  and  -

strongly pseudomonotone with > 0 . Choose iterated 

consequence k  such that  

2

2
0 < < < , 0,a b k

L


   

  
(23) 

with ,a b  be positive numbers. Let 
kx  be defined 

by Algorithm 1. Then the consequence { }kx  converges 

linear to 
*x . Furthermore, the rate of convergence is 

defined by  

1
1 * 0 1

1

k
kx x x x





+
+ −  −

−
P P P P

     

(24) 

and  

 

1 * 1 , 0,
1

k k kx x x x k




+ +−  −  
−

P P P P

    

 (25) 
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 where  

2

1
:= (0;1).

1 (2 )a bL





+ −
         

(26) 

  

Proof. From the Theorem 3.2, we obtain the unique 

solution 
*x . The rest of corollary directly comes from 

Theorem 4.1. 

Corollary 4.2. Let C  be a nonempty, closed, 

compact and convex subset of nR  and let : nF C → R  

be Lipschitz continuous with a constant > 0L  and 

satisfies the coercivity condition. Choose positively 

iterated consequence k  such that  

0
=0

= 0, = .lim k k
h

k

 


→

+
 

(27) 

Then the consequence { }kx  converges to 
*x . 

Furthermore, there exists 0k  such that  

2(2 ) > 0,k k L  −
 

(28) 

 

1 * *0

2

=
0

1

[1 (2 )]

kk

k

i i

i k

x x x x

L  

+ −  −

+ −

P P P P

 

(29) 

for all 0 .k k   

Proof. From the Theorem 3.2, we deduce the 

uniqueness of the solution. The rest of corollary is 

obtained from Theorem 4.2. 

 

5.  Conclusion  

In this article, we prove two new results about the 

uniqueness of variational inequality problems 

( , )VI F C , Theorem 3.1 and 3.2. Basing on these results 

and combining with knowledge of the existence of the 

solution, we gain four new outcomes about the 

existence and the uniqueness of the solution in the 

( , )VI F C , Corollary in section 3. 

Some new results in this article are of great 

significance. Their roles are illustrated through the 

application in examining the convergence and the rate 

of convergence of the projection method (Algorithm 1). 

We also ignore the assumption about the uniqueness of 

the ( , )VI F C  by assuming an additional condition 

either onto C  ( C  has compactness) or function F  ( F  

has coercivity condition). In this case, we receive two 

particular cases to obtain the convergence and the rate 

of convergence of Algorithm 1 for the ( , )VI F C . This 

contribute to the clarification of known results, Theorem 

4.1 and 4.2.  
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MỘT SỐ KẾT QUẢ MỚI VỀ SỰ TỒN TẠI VÀ DUY NHẤT NGHIỆM  

CỦA BÀI TOÁN BẤT ĐẲNG THỨC BIẾN PHÂN VÀ ỨNG DỤNG 
 

Tóm tắt: Trong bài báo này, chúng tôi xét sự tồn tại và tính duy nhất nghiệm của bài toán bất đẳng thức biến phân và ứng dụng 

để nghiên cứu sự hội tụ và tốc độ hội tụ của một phương pháp chiếu để giải bài toán này. Trước hết, chúng tôi phát biểu bài toán bất 

đẳng thức biến phân và một số khái niệm liên quan. Sau đó, chúng tôi trình bày các kết quả đã biết về sự tồn tại, duy nhất nghiệm 

của bài toán. Tiếp đến, chúng tôi trình bày các kết quả mới đạt được về tính duy nhất nghiệm và sự tồn tại duy nhất nghiệm của bài 

toán bất đẳng thức biến phân. Cuối cùng, các kết quả mới được sử dụng vào việc nghiên cứu sự hội tụ và tốc độ hội tụ của phương 

pháp chiếu một lần cho bài toán bất đẳng thức biến phân. 

Từ khóa: bài toán bất đẳng thức biến phân; sự tồn tại nghiệm; tính duy nhất nghiệm; phương pháp chiếu; sự hội tụ; tốc độ hội tụ. 

 


