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SOME NEW RESULTS IN THE EXISTENCE AND UNIQUENESS OF THE
SOLUTION TO THE VARIATIONAL INEQUALITY PROBLEM AND ITS
APPLICATION

Pham Quy Muoi®*, Van Ba Cong?, Duong Xuan Hiep?, Phan Duc Tuan?

Abstract: In this article, we consider the existence and uniqueness of the solution to the variational
inequality problems and applying these results to investigate the convergence and the convergent rate of
a projection method for solving the problem. At first, we introduce the variational inequality problem in a
general setting and some basic definitions. Then, we present normal results about the existence and
unigueness of the solution to this problem. After that, we prove new outcomes about the existence and
unigueness of the variational inequality problem. Finally, new results are used to study the convergence
and convergence rate of the projection method to the variational inequality problem.
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1. Introduction

The systematic study of variational inequality
problems began in the the mid-1960s and have become
a wide range of important tools to investigate and solve
abundant problems including equilibrium problems
arising in several branches of pure and applied sciences
in a unified and general framework. Variational
inequality theory is also closely related to optimization
problems [2, 5].

The variational inequality problem is one of the
central problems in nonlinear analysis. Hence, it attracts
a huge number of investigation from numerous
researchers in dynamic files in both theory and
applications, such as the existence and uniqueness
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proposition of its solution, the algorithm to solve the
solution and the quantities of its applications [6,
12,13,1,8-11]. A number of results about the existence
and uniqueness of variational inequality problems were

found in [2, 4]. Also, numerous algorithms to solve
problems about variational inequality were introduced
and the convergence and the rate of its convergence
were proved. (See [3, 7,12,13] for details.)

In this article, we only concentrate on investigating
the existence and uniqueness of variational inequality
problems in the general form. Specially, we reintroduce
some results and produce new outcomes about the
existence and uniqueness of its solution. Some
applications of new results in our article are related to
the proof of convergence and rate of convergence of the
projection method in variational equality problems in
[2,6,12,13,1,8-11]. Given the application of our results,
the unique assumptions of solutions in [2, Proposition
5.3] and [2, Proposition 5.4] are not necessary.

2.Preliminaries

In this section, we introduce the variational
inequality problem in the general form, present some
basic definitions and some known results about the
existence and uniqueness of the solution to the
variational problem. These definitions and results are
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closely relaed to our new outcomes, which are presented
in the next section.

Problem 2.1. (Variational inequality problem)
Given a nonempty, subset C of the Euclidean n-

dimensional space R" and a mapping F:C —R", the
general variational inequality problem, denoted
VI(F,C), is to find a vector X" e C such that

(F(X),x=x")=0,Vvx eC.
The set of solutions to this problem is denoted
SOL(F,C).
Definition 2.1. Let C be nonempty, convex subset

in R",and let F:C — R" be a mapping. The mapping
F issaid to be

(a) Strongly monotone on C with constant >0
if for all pair of points x,y e C

(FO)—F(y), x=y)= Bl x—yIP. 1)

(b) Strictly monotone on C if for all distinct
x,yeC

(F(X)=F(y),x-y)>0. 2

(¢c) Monotone on C
X,y € C, we have

(F(X)=F(y),x-y)=0. ®)
(d) y-Strongly pseudomonotone on C if for all

if for all pair of points

pair of points x,y € C, we have

(F(Y), x=y) 2 0=(F(X),x=y) > 7 | x—y |I*.

(e) Pseudomonotone on C if for all pair of points
X,y € C, we have

(F(Y),x=y)20=(F(x),x-y) 2 0. ()

(f) Quasimonotone on C if for all pair of points
X,y € C, we have

(F(y),x=y)>0=(F(x),x-y)=0. (6)

(9) Lipschitz continuous on C with L >0 if for
all x,y eC, we have

IFO)-FMW) i< LI x=yl. U]

It follows from the definitions that the following
implications hold:

(@) = (b) = (c) > (e) » (f),(e) « (d).

Definition 2.2. Given C be a nonempty set,
convex subset of R". A mapping F:C — R" defined
by

Fe (x) = argmin{|| x-y||:y C},
is called projector onto C .

Proposition 2.1 ([2, Proposition 1.2]) Let C be a
closed convex set. Then y = P (x) iff

(y—=X%X,z—y)y=0,vzeC. (8)

In variational inequality VI(F,C) for each xeC
and 2 >0, mapping F. :C — R" defined by

Fe () = x=Fc (x=AF (X)), 9)
is often called natural map of F onto C. The relation
between the solution of variational inequality VI(F,C)
and the natural map is showed in the following results.

Proposition 2.2 ([1, Proposition 2.2]). x~ is a
solution of variational inequality problem VI(F,C) if
x" is a zero-point of mapping F. , i.e Fe (x)=0.

Based on Proposition 2.2 and Brouwer fixed-point
theory (see [2] for details), the results about the
existence and unigueness of solution in variational
equality have been proven. For the proof, we refer the
reader to [2, 4].

Proposition 2.3 ([1, Proposition 2.1]). Let C be a
closed, compact and convex subset of R" and
continuous mapping F :C — R". The set SOL(F,C) is
nonempty.

Proposition 2.4 ([2, Corollary 2.1]). Let C be a
nonempty, closed and convex subset of R" and let
F:C — R" be a continuous. If F is coercive mapping,
i.e, exist x° € C such that

(F(x)—F(x°),x=x%

[ x=x°

— 40, as PxP—>+oo for

x e C and for some x° e C , then variational inequality
VI(F,C) has a solution.

Proposition 2.5 ([4, Propostion 1.4]) If C is a

nonempty, closed and convex subset of R" and
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F:C—>R" be
Lipschitz continuous on C then variational inequality
VI(F,C) has unique solution.

S -strongly  pseudomonotone and

3.Main results
Theorem 3.1. If F is a strictly monotone on C
then the problem VI(F,C) has at most one solution.

Proof. Assume that x, and X, are solutions to
Problem VI(F,C), X, # X, . Then we have

(F(x),x—%)2>0,vxeC (10)
and

(F(X),x—%;,) 20, vxeC. (11)

Replace X to x in (11) and X to X, in (10), then
add these two inequalities to yield:

(F(X)—F(Xy), % —%)2=0,vxeC
or

(F(%)—F(X;), % —X,) <0, VxeC.

This contradict with the definition of strictly
monotone function F. Hence ¥ = X,.

Corollary 3.1. Let C be a nonempty, compact and

convex subset of R", and let F:C—>R" be a
continuous and strictly monotone mapping on C. Then
variational inequality VI(F,C) has a unique solution.

Proof. From the Proposition 2.3 we obtain the
existence of solution in problem VI(F,C). The

uniqueness of solution is directly deduced from the
Theorem 3.1.

Corollary 3.2 Let C be a nonempty, closed and

convex subset of R" and let F:C—>R" be a
continuous. If F is a continuous, strictly monotone and

coercive mapping, i.e, there exists x® e C such that

(FO-FO) X=X
x|

o0

as PxP—+wo for xeC and for some x° eC, then

variational inequality VI(F,C) has a unique solution.

Proof. From the Proposition 2.4 we have the
existence of solution in problem VI(F,C), the

uniqueness of solution is deduced from Theorem 3.1.
Theorem 3.2. If F be y -strongly pseudomonotone
on C with ¥ >0 then the VI(F,C) has a unique solution.

Proof. Assume x, and X, are two solutions to the
problem VI(C,F) and x; # X,. Then, we have

F(x), % —%)=0,VvxeC (12)
and

(F(Xy), % —X%,) =0, ¥x eC. (13)

From (12) and the proposition of y-strongly
pseudomonotone of F on C we deduce that

(FOR) % =%) 27 % —x |*>0 (14)
We can rewrite this inequality as
= (F(X2), % —Xp) <0. (15)

This contrasts with (13). Hence, X, =X,, or the
problem VI(F,C) has a unique solution.

Corollary 3.3. Let C be a nonempty, compact and

convex subset of R" and let F:C—>R" be a
continuous mapping and y -strongly pseudomonotone

on C with y>0. Then, the VI(F,C) has a unique
solution.

Proof. From the Proposition 2.3, we deduce the
existence of the solution in the VI(F,C). The

uniqueness of the solution comes from the Theorem 3.2.
Corollary 3.4. Let C be a nonempty, compact and

convex subset of R" and let F:C—>R" be a
continuous mapping and y -strongly pseudomonotone

on C with y >0 and satisfies the coercivity condition.
Then, the VI(F,C) has a unique solution.

Proof. From the Proposition 2.5, we can obtain the
existence of the solution in the problem VI(F,C) and

the uniqueness of its solution can be obtained from
Theorem 3.2.

4. Application
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In this section, we will use new results in previous
parts in order to receive the convergence and the rate of
convergence of a projection method for the VI(F,C).

At first, we consider the projection method for the
VI(F,C) that was presented in [1].

Algorithm 1:

Step 1. Compute x*™:= P, (x* -4 F(x)). If
x“*1 = x¥ then stop. Otherwise, return to Step 2.

Step 2. Set k:= k+1 and return to Step 1.

k" js a solution

If Algorithm stops in step k then x
to the VI(F,C), see [2]. Otherwise, if Algorithm has

infinite iteration, then the convergence and the rate of
convergence are proven in the following theorem.

Theorem 4.1 ([2, Theorem 5.3]). Let C be a non

empty, closed, convex subset of R" and let F:C —R"
be Lipschitz continuous with a constant L >0 and y -

strongly pseudomonotone with y > 0. Choose iterated
consequence 4, such that

2
O<a</1ksb<L—72/,Vk20, (16)

with a,b be positive numbers. Let x be defined by
Algorithm 1. If X" be a unique solution of VI(F,C)

then the consequence {x“} converges linear to x .
Furthermore, the rate of convergence is defined by

k+1
Pxk X <2 px0_xlp 17)
1-u
and
Pxk _x"pc £ pxk_xkp vk >0, (18)
1-p
as
1
TR P S—y ()} (19)

,/1+ a(2y —bL?)

Theorem 4.2 ([2, Theorem 5.4]). Let C be a

nonempty, closed, convex subset of R" and

F:C —R" be Lipschitz continuous with a constant

L>0 and y-strongly pseudomonotone with » >0.
Choose iterated consequence 4, such that

. 2054 = 4oo (20)
limA, o,ézk 400,
Assume that the VI(F,C) has a unique solution

k

x", then consequence x* is defined by Algorithm 1

converges to X . Moreover, there exists k, such that

A2y =A1%) >0, (21)
PxkH X P 1 Px0 _x" P (22)
k
\/H[wi @y -4
i:k0
forall k >k,.

One of the conditions for obtaining results about the
convergence and the rate of convergence of Algorithm 1
that is received in the Theorem 4.1 and 4.2 is the
uniqueness of the solution in the VI(F,C) . Combining

it with Corollary 3.3 and 3.4, we obtain the following
results:

Corollary 4.1. Let C be a nonempty, closed,

compact and convex subset of R" and let F:C > R"
be Lipschitz continuous with a constant L >0 and y-

strongly pseudomonotone with » > 0. Choose iterated
consequence 4, such that

O<a</1sb<|2_—72/,VKZO, (23)

with a,b be positive numbers. Let x* be defined
by Algorithm 1. Then the consequence {xk} converges

linear to x . Furthermore, the rate of convergence is
defined by

k+1
P X P px0_xlp (24)
1-u

and

Pxk _x pc £ pykl _ykpyk >0,
T (25)
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where

1

H= e (01). (26)
JL+a(2y-bL?)

Proof. From the Theorem 3.2, we obtain the unique

solution x”. The rest of corollary directly comes from
Theorem 4.1.

Corollary 4.2. Let C be a nonempty, closed,

compact and convex subset of R" and let F:C - R"
be Lipschitz continuous with a constant L>0 and
satisfies the coercivity condition. Choose positively
iterated consequence A, such that

h—0

limA =0, A =+, en
k=0

Then the consequence {xk} converges to X' .
Furthermore, there exists k, such that

Ay =4 L2) >0, )

Px“* _x" < L Px0_x'P

k
[ i+ ar-41%

i=kg

(29)

forall k >k,.

Proof. From the Theorem 3.2, we deduce the
uniqueness of the solution. The rest of corollary is
obtained from Theorem 4.2.

5. Conclusion

In this article, we prove two new results about the
uniqueness of variational inequality  problems
VI(F,C), Theorem 3.1 and 3.2. Basing on these results

and combining with knowledge of the existence of the
solution, we gain four new outcomes about the
existence and the uniqueness of the solution in the
VI(F,C), Corollary in section 3.

Some new results in this article are of great
significance. Their roles are illustrated through the
application in examining the convergence and the rate
of convergence of the projection method (Algorithm 1).
We also ignore the assumption about the uniqueness of
the VI(F,C) by assuming an additional condition

either onto C (C has compactness) or function F (F
has coercivity condition). In this case, we receive two
particular cases to obtain the convergence and the rate
of convergence of Algorithm 1 for the VI(F,C). This

contribute to the clarification of known results, Theorem
4.1and 4.2.
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Strong convergence theorem for the lexicographic

MOT SO KET QUA MOI1 VE SU TON TAl VA DUY NHAT NGHIEM
CUA BAI TOAN BAT PANG THUC BIEN PHAN VA UNG DUNG

Tom tat: Trong bai bao nay, chiing t6i xét sw tn tai va tinh duy nhat nghiém cla bai toan bat dang thirc bién phan va (rng dung
dé nghién ctru sw hoi tu va téc do hoi tu ctia mot phuong phap chiéu dé giai bai toan nay. Truwdc hét, ching téi phat bidu bai toan bat
déng thirc bién phan va moét s khai niém lién quan. Sau do, ching téi trinh bay cac két qua da biét vé s ton tai, duy nhat nghiém
clia bai toan. Tiép dén, chang téi trinh bay cac két qua méi dat dwoc vé tinh duy nhat nghiém va sw tén tai duy nhat nghiém cda bai
toan bat dang thirc bién phan. Cudi cling, cac két qua méi dwoc str dung vao viéc nghién cru sy hoi tu va téc do hoi tu clia phwong
phap chiéu mét 1an cho bai toan bat déng thirc bién phan.

Tir khoa: bai toan bat ddng thirc bién phan; sw tn tai nghiém; tinh duy nhat nghiém; phwong phap chiéu; sw héi tu; téc do hdi tu.



